COMPUTER GRAPHICS

BCA

III Sem

Multiple choice questions

1. Smallest size object that can be displayed on a monitor is called
a) Picture element
b) Point
c)Dot Pitch
d) aspect ratio

Ans: Picture element
2. Each screen point is referred to as \qquad
a) Resolution
b)Pixel
c)Persistence
d)Dot Pitch

Ans: Pixel
3. On a monochromatic monitor, the frame buffer is known as \qquad
a) Display file
b) Pixmap
c) Bitmap
d) Refresh buffer

Ans: Bitmap
4. On a color monitor, the refresh buffer is also called \qquad
a)Frame buffer
b)Pixmap
c)Bitmap
d)Display file

Ans: Pixmap
5. \qquad refers to pixel spacing.
a)Pixmap
b)Resolution
c)Pixel depth
d)Persistence

Ans: Resolution
6. The distance from one pixel to the next pixel is called \qquad
a)Resolution
b)Dot Pitch
c)Pixmap
d)ppi

Ans: Resolution
7. The maximum number of points that can be displayed without overlap on a CRT
a)Aspect Ratio
b)Resolution
c)Brightness
d)Pixel

Ans: Resolution
8. \qquad is the number of points per centimeter that can be plotted horizontally and vertically.
a) Aspect Ratio
b)Pixel Depth
c)Resolution
d)Dot Pitch

Ans: Resolution
9. \qquad is the ratio of horizontal points to vertical points necessary to produce equal length lines in both direction.
a)Dot Pitch
b)Resolution
c)Aspect Ratio
d) Height-Width Ratio

Ans: Aspect Ratio
10. Identify the odd one out from the following
a)Frame Buffer
b)Pixmap
c)Display program
d)Refresh Buffer

Ans: Pixmap
11. The shortest distance between any two dots of the same color is called \qquad
a)Resolution
b)Dot Pitch
c)Pixel Depth
d)ppi

Ans: Dot Pitch
12. The standard aspect ratio for PC is \qquad
a) $6: 5$
b) $4: 3$
c)3:2
d)5:3

Ans: 4:3
13. In CRT, the electron intensity is adjusted using \qquad
a) Accelerating anode
b) Control grid
c) Electron gun
d) Focusing anode

Ans: Control grid
14. Brightness of a display is controlled by varying the voltage on the \qquad
a) Focusing anode
b)Connection pins
c)Control grid d)Power supply

Ans: Control grid
15. Lower persistence phosphorus is used in
a) Animation
b) Simple object
c) Complex object
d) All of these

Ans: Animation
16. Lower persistence phosphorus needs \qquad refresh rate
a) Lower
b)Higher
c)Medium
d)None of these

Ans: Higher
17.. Higher persistence phosphorus needs \qquad refresh rate
a) Lower
b)Higher
c)Medium
d)None of these

Ans: Lower
18. Higher persistence phosphorus is used in
a) Animation
b) Simple object
c) High Complex object
d) All of these

Ans: High Complex object
15. Memory area holding the intensity information of an image is called \qquad
a)Refresh buffer b)Font cache c)Picture definition d)Video controller

Ans: Refresh buffer
16. Intensity representation of an image is called \qquad
a)Frame buffer b)Picture definition c)Display list d)Brightness

Ans: Picture definition
17. The purpose of refreshing a CRT is \qquad
a)To avoid flickering
b)To maintain steady picture
c)To avoid fading of pixels
d)All of the above

Ans: All of the above
18. The fly-back of electron beams from one scanline to next is known as \qquad
a)Vertical Retrace
b)Horizontal Retrace
c)Raster scanning
d)Refreshing

Ans: Horizontal Retrace
19. The return of electron beam to top left corner of the screen after one frame is called \qquad
a)Horizontal fly-back
b)Vertical Fly-back
c)Scanning
d)None of the above

Ans: Vertical Fly-back
20. In raster scan display, the frame buffer holds \qquad
a)Line drawing commands
b)Scanning instructions c)Image Resolution
d) Intensity information

Ans: Intensity information
21. In random scan display, the frame buffer holds \qquad
a)Line drawing commands
b)Scanning instructions c)Image Resolution
d) Intensity information

Ans: Line drawing commands
22. Identify the odd one out from the following
a)Vector display
b)Raster scan display
c)Calligraphic display
d)Stroke-writing display

Ans: Raster scan display
22. Interlaced refresh procedure is allowed in \qquad
a) LCD
b)DVST
c)Raster scan display
d)Random scan display

Ans: Raster scan display
23. Vector display is well suited for \qquad
a) Animation
b) Line drawing applications
c) Cartoons
d) All of the above

Ans: Line drawing applications
24. Beam penetration method is usually used in \qquad
a)LCD
b)Raster Scan display
c) Random scan display
d)DVST

Ans: Random scan display
25. Shadow mask method is usually used in \qquad
a)LCD
b)Raster Scan display
c) Random scan display
d)DVST

Ans : Raster Scan display
26. Identify the colors produced in beam penetration method.
a) Red, Green, Blue, White
b)Red, Orange, Yellow, Green
c)Red, Green, Blue
d) Green, Red, White, Orange

Ans : Red, Orange, Yellow, Green
27. An RGB color system with 24 bits os storage per pixel is known as \qquad
a) Color CRT
b)True-color system
c)RGB monitor d)Color- Depth

Ans: True-color system
28. Identify the features of Vector display
a)High resolution, Jagged lines, Lack in color depth
b)Smooth lines, Poor resolution, Black \& White
c) High resolution, Lack in color depth, Smooth lines
d)Inexpensive, monochromatic, smooth lines

Ans: High resolution, Jagged lines, Lack in color depth
29. Identify different type of computer graphics
a) Monochrome and Color
b)CRT and Flat panel
c) Vector an Raster
d)Monitors and Hardcopy devices

Ans: Vector an Raster
30. DVST stands for \qquad
a)Digital View Storing Table
b)Direct Visual Storage Tube
c)Direct View Storage Tube
c)Digital View Storage Tube

Ans: Direct View Storage Tube
31. Refreshing is not needed in DVST because of the presence of \qquad
a) Primary gun
b) Flood gun
c) Focusing anode
d)Control grid

Ans: Flood gun
32. In DVST, the electron beam from primary electron gun strikes on \qquad
a) Phosphor screen
b) Collector mesh
c)Storage mesh d) Flood gun

Ans: Storage mesh
33. The purpose of flood gun in DVST is \qquad
a) To store the picture pattern
b) To slow down the flood electrons
c) To enable color pixels
d) To focus the electron beam

Ans: To slow down the flood electrons
34. Identify the features of DVST from the following.
a) Monochromatic, Flicker free, Low resolution
b)Monochromatic, Flicker free
c) Color screens, Refresh monitors, High resolution
d)Expensive, Low resolution

Ans: Monochromatic, Flicker free
35. Video devices with reduced volume, weight and power consumption are collectively known as \qquad
a) Light weight monitors
b)Flat-panel displays
c)CRT
d) Portable display

Ans: Flat panel displays
36. Pick out the odd one out
a) LED
b)LCD c) Gas Discharge tube
d) Plasma Panel

Ans: LCD
37. Match the following

Part A
A. Plasma panel
B. DVST
C. LCD
D. Thin film electroluminescent

Part B
i) Polarizer
ii) Zinc sulfide
iii) Dielectric mesh
iv)Neon gas
a) A-ii, B-iv, C-i, D-iii
b) A-ii, B-iii, C-iv, D-i
c) A-iv, B-iii, C-i, D-ii
d) A-i ,B-iv, C-ii, D-iii

Ans: A-iv, B-iii, C-i, D-ii
38. \qquad is responsible for accessing the frame buffer to refresh the screen.
a) Graphics package
b) Video controller
c) CPU
d) Monitor

Ans: Video controller
39. Digitizing a picture definition into a set of intensity values is known as
a) Digitization
b) Scan conversion
c)Refreshing
d) Scanning

Ans: Scan conversion
40. \qquad will free the CPU from graphics chores.
a) Display processor
b) Monitor
c) ALU
d)Video controller

Ans: Display processor
41. Write an example for non-emissive displays
a) LED
b)LCD c) Gas Discharge tube
d) Plasma Panel

Ans: LCD
42. Identify impact printer from the following
a) Drum Plotter
b)Inkjet printer c)Electrostatic printer
d) Dot-matrix printer

Ans: Dot-matrix printer
45. Write an example for non-impact printer
a) Drum plotter
b) Electrostatic printer
c) Laser printer
d) All of the above

Ans: All of the above
46. Identify the odd one out.
a) Mouse
b) Keyboard
c) Trackball
d) Space ball

Ans: Keyboard
47. GIF stands for \qquad
a) Global Image Format
b) Graphics Interchange Format
c) Graphics Image Format
d) None of the above

Ans: Graphics Interchange Format
48. The \qquad simply reads each successive byte of data from the frame buffer.
a) Digital Controller
b) Data Controller
c) Display Controller
d) All of above

Ans: Display Controller
49. The refresh rate below which a picture flicker is \qquad
a) 25
b) 30
c) 35
d) 60

Ans: 25
50. \qquad used to regulate the flow of elections in CRT ?
a) Electron gun
b) Focusing anode
c) Control grid d) All of the above

Ans: Control grid
51. The technique used to summarize the financial, statistical, mathematical,scientific and economic data is ?
a) Computer Art
b) Image processing
c) Presentation Graphics
d)None of the above

Ans: Presentation Graphics
52. Graphics and image processing technique used to produce a transformation of one object into another is called
a) Animation
b) Morphing
c) Half toning d) None of the above

Ans: Animation

53. The amount of light emitted by the phosphor coating depends on the?
a) Number of electrons striking the screen
b) Speed of electrons striking the screen
c) Distance from the cathode to the screen
d)None of above

Ans: Number of electrons striking the screen
54. Gray scale is used in \qquad
a) A Monitor that have color capability
b) A Monitor that have no color capability
c) Random scan display
d) Raster scan display

Ans: A Monitor that have no color capability
55. A wireless mouse works on
a) Infra blue radiation
b) Infra Red radiation
c) X-rays
d) UV rays

Ans: Infrared radiation
56. Vector graphics is composed of
a. Pixels
b. Paths
c. Palette`
d. None of these

Ans: Paths
57. Raster graphics are composed of
a. Pixels
b. Paths
c. Palette
d. None of these

Ans: Pixels
58. EPS image file format is used for
a) Vector graphics
b) Bitmap
c) Both a \& b
d) None of these

Ans: Both a \& b
59. TIFF (tagged image file format)are used for
a. Vector graphics
b. Bitmap
c. Both a \& b
d. None of these

Ans: Bitmap
60. Two dimensional color model are
a. RGB and CMKY b. RBG and CYMK c. RGB and CMYK d. None

Ans: RGB and CMYK
61. RGB model are used for
a. Computer display
b. Printing c. Painting d. None of these

Ans: Computer display
62. CMYK model are used for
a. Computer display
b. Printing
c. Painting
d. None of these

Ans: Printing
63. The intersection of three primary RGB color produces
a. White color
b. Black color
c. Magenta color
d. Blue color

Ans: White color
64. The intersection of primary CMYK color produces
a. White color
b. Black color
c. Cyan color
d. Magenta color

Ans: Black color
65. Random scan systems are designed for
a. Line drawing application
b. Pixel drawing application
c. Color drawing application
d. None of these

Ans: Line drawing application
66. A major disadvantage of DVST in interactive computer graphics is
a) Ability to selectively erase part of an image
b) Inability to selectively erase part of image from screen
c) Inability to produce bright picture
d) None

Ans: Inability to selectively erase part of image from screen
67. Which of the following allow for 8 mirror images?
a) Parabola
b)Ellipse
c) Hyperbola
d) Circle

Ans: Circle
68. The simplest output primitive is \qquad
a) Straight line
b) Straight line segment
c) Point
d)Circle

Ans: Point
69. A bitmap is \qquad bit(s) per pixels.
a) 0
b) 1
c)2
d) 4

Ans: 1
70. The intensity of a grayscale pixel is expressed within a given range between a minimum and a maximum
a) 1 and 2
b) 2 and 1
c) 0 and 1
d)0 and 2

Ans: 0 and 1
71. Each pixel has \qquad basic color components
a. Two or three
b. One or two
c. Three or four
d. None of these

Ans: Three or four
72. The quality of an image depend on
a. No. of pixel used by image
b. No. of line used by image
c. No. of resolution used by image
d. None

Ans: No. of pixel used by image
73. The basic geometric structures that describes a scene on display is called \qquad
a) Attributes
b) Output primitive
c) Lines
d) Curves

Ans: Output primitive
74. \qquad controls the basic display properties of output primitives.
a) Attribute parameter
b) setpixel
c) getpixel
d) None of the above

Ans: Attribute parameter
75. To set line width attributes in a PHIGS package, \qquad function is used.
a) setLineThickness(lw)
b)setLineWidth(lw)
c) setLineWidthScaleFactor(lw)
d)setPolylineWidth(lw)

Ans: setLineWidthScaleFactor(lw)
76. Identify the values for fill-style parameter from the following
a) Hollow
b)Hatch
c) Pattern
d)All of the above

Ans: All of the above
77. \qquad function is used to set the basic fill style.
a) setFillStyle(fs)
b) setFillStyleIndex(fs)
c) setInteriorStyle(fs)
d)FillType(ft)

Ans: setInteriorStyle(fs)
78. \qquad is defined as the distance between the baseline and cap line of the character body.
a) Character Size
b) Character Height
c) Character Width
d)Character Length

Ans: Character Height
80. \qquad function is used to change the size of a character without changing the height:width ratio. a)setTextSize(ts) b)setCharacterHeight(ch) c)setCharacterSize(cs) d)setTextHeight(th)

Ans: setCharacterHeight(ch)
81. \qquad will define a group of attribute values of each primitive to be used on a monitor
a) Primitive table
b)Bundle table
c) Attribute table
d) None of the above

Ans: None of the above
82. \qquad function is used to set how text is to be positioned with respect to the start coordinates
a) setTextAlignment(h,v)
b)setTextPrecision(tp) c)setTextPosition(h,v) d)setText(ts)

Ans: setTextAlignment(h,v)
83. \qquad is used to check the current status of each attributes
a) setpixel
b)getpixel
c)inquiry function
d)status function

Ans: Inquiry function
84. The basic transformations include
a) Translation
b)Rotation
c)Scaling
d) All of the above

Ans: All of the above
85. The transformation in which an object is moved in a minimum distance path from one position to another is called
a) Rotation b) Replacement
c) Translation
d) Scaling

Ans: Translation
86. The translation distances (dx, dy) is called as
a) Translation vector
b) Shift vector
c) Both a and b
d) Neither a nor b

Ans: Both a and b
87. The two-dimensional translation equation in the matrix form is
a) $P{ }^{\prime}=P+T$
b) $P^{\prime}=P-T$
c) $P^{\prime}=P * T$
d) $P^{\prime}=p$
88. The transformation in which an object is moved from one position to another in circular path around a specified pivot point is called
a) Rotation
b) Shearing
c) Translation
d) Scaling

Ans: Rotation
89. The transformation in which the dimension of an object are changed relative to a specified fixed point is called
a) Rotation
b) Reflection
c) Translation
d) Scaling

Ans: Scaling
90. The transformation that produces a parallel mirror image of an object are called
a) Rotation
b) Reflection
c) Translation
d) Scaling

Ans: Reflection
91. If an object is rotated through an angle A in clockwise direction, the rotation matrix $R=$ \qquad
a) $\cos \mathrm{A} \quad \sin \mathrm{A}$
$-\sin A \quad \cos A$
b) $\cos \mathrm{A} \quad-\sin \mathrm{A}$ $\sin A \quad \cos A$
c) $\sin \mathrm{A}$ $\cos A$
$\cos \mathrm{A}$
$\sin \mathrm{A}$
d) None

Ans: $\quad \cos A \quad \sin A$

$$
-\sin A \quad \cos A
$$

92. If a point (x, y) is reflected about an axis which is normal to the $X Y$ plane and passing through the origin, the reflected point (X, Y) is:-
a) $(x,-y)$
b) $(-x, y)$
c) $(-x,-y)$
d) (y, x)

Ans: (-x,-y)
93. Reflection of a point about x-axis, followed by a counter-clockwise rotation of 900 , is equivalent to reflection about the line?
a) $x=-y$
b) $x=0 \quad$ c) $x=y$
d) $x+y=1$

Ans: $x=y$
94. A circle, if scaled only in one direction becomes a ?
a) Hyperbola
b)Ellipse
c) Parabola
d)remains a circle

Ans: Ellipse
95. $(2,4)$ is a point on a circle that has center at the origin. Which of the following points are also on circle ?
a) $(2,-4)$
b) $(-2,4)$
c) $(-4,-2)$
d) All of above

Ans: All of above
96. Which technique of color CRT is used for production of realistic image
a) Beam penetration
b) Shadow mask
c) both $a \& b$
d)None of above

Ans: Shadow mask
97. A composite transformation matrix can be made by determining the \qquad of matrix of the individual transformation
a) Sum
b) Product
c) Difference
d) None of the above

Ans: Product
98. Each successive transformation matrix \qquad the product of the preceding transformation
a) pre-multiplies
b) post-multiplies
c) adds
d)subtracts

Ans: pre-multiplies
99. Which of the following is not a rigid body transformation?
a) Translation
b) Rotation
c) Shearing
d) Reflection

Ans: Shearing
100. Forming products of transformation matrices is often referred as
a) Concatenation
b) Composition c) both $a \& b$
d) None of above

Ans: both a\&b
101. Two consecutive translation transformation $t 1$ and $t 2$ are
a) Additive b) Multiplicative
c) Subtractive
d) none of above

Ans: Additive
102. Two consecutive rotation transformation r1 and r2 are
a) Additive b) Multiplicative
c) Subtractive
d) none of above

Ans: Additive
103. Two consecutive scaling transformation s1 and s2 are
a) Additive
b) Multiplicative
c) Subtractive
d) none of above

Ans: Multiplicative
104. The process of mapping a world window in world coordinate system to viewport are called
a) Transformation viewing
b) Viewport
c) Clipping window
d) Screen coordinate system

Ans: Transformation viewing
105. The process of extracting a portion of a database or a picture inside or outside a specified region are called
a) Transformation
b) Projection
c) Clipping
d) Mapping

Ans: Clipping
106. The rectangle portion of the interface window that defines where the image will actually appear are called
a) Transformation viewing
b) View port
c) Clipping window
d) Screen coordinate system

Ans: View port
107. The phenomenon of having a continuous glow of a beam on the screen even after it is removed is called as?
a) Fluorescence
b) Persistence
c) Phosphorescence
d) Incandescence

Ans: Phosphorescence
108. Coordinates of window are knows as \qquad
a) Screen coordinates
b) World coordinates
c) Device coordinates
d) Cartesian coordinates

Ans: World coordinates
109. Coordinates of viewport are known as \qquad
a) World coordinates
b)Polar coordinates
c) Screen coordinates
d)Cartesian coordinates

Ans: Screen coordinates
110. The region against which an object is clipped is called a \qquad
a) Clip window
b) Boundary
c) Enclosing rectangle
d) Clip square

Ans: Clip window
111. \qquad identifies the picture portions that are exterior to the clip window
a) Interior clipping
b) Exterior clipping
c) Extraction
d) None of the above

Ans: Exterior clipping
112. Identify line clipping algorithms from the following
a) Cohen- Sutherland algorithm
b) Liang-Barsky clipping
c) Nicholl-Lee-Nicholl clipping
d)All of the above

Ans: All of the above
113. The region code of a point within the window is \qquad
a) 1111
b)0000
c) 1000
d)0001

Ans: 0000
114. According to Cohen-Sutherland algorithm, a line is completely outside the window if \qquad
a) The region codes of line endpoints have a ' 1 ' in same bit position.
b) The endpoints region code are nonzero values
c) If L bit and R bit are nonzero.
d) The region codes of line endpoints have a ' 0 ' in same bit position.

Ans: The region codes of line endpoints have a ' 1 ' in same bit position.
115. The region code of a point is 1001 . The point is in the \qquad region of window.
a) Top right
b) Top left
c) Bottom left
d) Botton right

Ans: Top left
116. The result of logical AND operation with endpoint region codes is a nonzero value. Which of the following statement is true?
a) The line is completely inside the window
b) The line is completely outside the window
c) The line is partially inside the window
d) The line is already clipped

Ans: The line is completely outside the window
117. The left (L bit) bit of the region code of a point (X, Y) is ' 1 ' if \qquad
a) $\mathrm{X}>\mathrm{XW}_{\text {MIN }}$
b) $\mathrm{X}<\mathrm{XW}_{\text {MIN }}$
c) $\mathrm{X}<\mathrm{XW}_{\text {MAX }}$
d) $\mathrm{X}>\mathrm{XW}_{\text {MAX }}$

Ans: $\mathrm{X}<\mathrm{XW}_{\mathrm{MIN}}$
118. The right bit (R bit)of the region code of a point (X, Y) is ' 1 ' if \qquad
a) $X>X_{M I N}$
b) $\mathrm{X}<\mathrm{XW}_{\text {MIN }}$
c) $\mathrm{X}<\mathrm{XW}_{\text {Max }}$
d) $X>X_{M A X}$

Ans: $X>X_{W} W_{M A X}$
119. The Most Significant Bit of the region code of a point (X, Y) is '1' if \qquad
a) $\mathrm{Y}>\mathrm{YW}_{\text {MIN }}$
b) $\mathrm{Y}<\mathrm{YW}_{\text {MIN }}$
c) $\mathrm{Y}<\mathrm{YW}_{\mathrm{MAX}}$
d) $\mathrm{Y}>\mathrm{YW}_{\text {MAX }}$

Ans: $\mathrm{Y}>\mathrm{YW}_{\mathrm{MAX}}$
120. The bottom bit of the region code of a point is ' 0 ' if \qquad
a) $\mathrm{Y}>\mathrm{YW}_{\text {MIN }}$
b) $\mathrm{Y}<\mathrm{YW}_{\text {MIN }}$
c) $\mathrm{Y}<\mathrm{YW}_{\text {max }}$
d) $\mathrm{Y}>\mathrm{YW}_{\text {MAX }}$

Ans: $\mathrm{Y}<\mathrm{YW}_{\mathrm{MIN}}$
121. The \qquad algorithm divides a 2D space into 9 regions, of which only the middle part (viewport) is visible.
a) Cohen-Sutherland
b)Liang Barsky
c) Sutherland Hodegeman
d) $\mathrm{N}-\mathrm{L}-\mathrm{N}$

Ans: Cohen-Sutherland
122. A method used to test lines for total clipping is equivalent to the \qquad
a) logical XOR
b) logical OR
c)logical AND
d) both a \& b

Ans: logical AND
123. Sutherland Hodgeman algorithm works well for. \qquad
a) Concave polygon
b) Convex polygon
d)Smooth curves
d) Line segment

Ans: Convex polygon
124. A transformation that slants the shape of an object is called \qquad
a) Reflection
b) Shear
c) Distortion
d) Scaling

Ans: Shear
125. The text clipping strategy to reject an entire character string that overlaps a clip window is called. \qquad
a) All-or-none character clipping
b) All-or-none string clipping
c) Curve clipping
d) both a \& b

Ans: All-or-none string clipping
126. . The object refers to the 3D representation through linear, circular or some other representation are called
a) Quadric surface
b) Sweep representation
c) Torus
d) None of these

Ans: Sweep representation
127. A quad-tree is a data structure which is used for graphical representation of \qquad
a) 2D digital picture or object
b)3D picture or object
c) Both a \& b
d)None of these

Ans: 2D digital picture or object
128. A octree is a data structure which is used for alternative representation of \qquad
a) 2D digital picture or object
c) 3D picture or object
c) Both a \& b
d) None of these

Ans: 3D picture or object
129. How many data elements for each region in quad-tree data structure
a) 2
b) 4
c) 8
d) 6

Ans: 4
130. How many data elements for each region in octree data structure
a) 2
b) 4
c) 6
d) 8

Ans: 8
131. \qquad refer to the shapes created by union, intersection and difference of given shapes
a) . Wire frame model
b) Composite transformation
c) Constructive solid geometry methods
d) None

Ans: Constructive solid geometry methods
132. The center of display screen is computed as
a) $\mathrm{X}_{\text {max }}, \mathrm{y}$ max $_{\text {m }}$
b) $X_{\max } / 2, y_{\max } / 2$
c) $X_{\max } / 3, y_{\max } / 3$
d) None of these

Ans: $\mathrm{X}_{\max } / 2, \mathrm{y}_{\max } / 2$
133. The operation that is used for repositioning the object is called
a) Rubber band method
b) Gravity method
c) Dragging
d) None

Ans: Dragging
134. Which method are used to construct and position the straight lines, arcs and circles etc.
a) Rubber band method
b) Gravity method
c) Dragging
d)None of these

Ans: Rubber band method
135. Which are used to connect a line to already drawn line
a) Rubber band method
b) Gravity method
c) Dragging
d)None of these

Ans: Gravity field
136. The rubber band method is also applicable to \qquad objects.
a) Scale
b) Scalar
c) Vector
d) Rotate

Ans: Scale
137. \qquad is known as standard graphics objects
a) Octree
b) Quadtree
c) Polygon surfaces
d) Ellipsoid

Ans: Polygon surfaces

138 \qquad includes vertex coordinates and parameters to identify the spatial orientation of polygon surfaces
a) Attribute table
b) Geometric table
c) Orientation table
d) Position table

Ans: Geometric table
139. Identify the data structures used to store the data about polygon surfaces
a) Vertex table
b) Polygon table
c) Edge table
d) All of the above

Ans: All of the above
140. Coordinate values for each vertex is stored in \qquad
a) Coordinate table
b) Vertex table
c) Edge table
d) Location table

Ans: Vertex table

141 \qquad data structure is used to identify the vertices for each polygon edge.
a) Vertex table
b) Polygon table
c) Edge table
d)Surface table

Ans: Edge table
142. \qquad data structure is used to identify the edges for each polygon .
a) Vertex table
b) Polygon table
c) Edge table
d)None of the above

Ans: Polygon table
143. A triangular strip connected with 50 triangles connects \qquad vertices.
a) 52
b) 48
c) 50
d) 49

Ans: 52
144. When a circle is subjected to translational sweep, a \qquad is formed.
a) Ellipse
b) Cone
c) Sphere
d) Cylinder

Ans: Cylinder
145. A surface of revolution is generated by a \qquad of a 2D curve.
a) Translational sweep
b) Rotational sweep
c) union
d) intersection

Ans: Rotational sweep
146. A prism is generated by translational sweep of a \qquad
a) Circle
b) Square
c) Polygon
d) Triangle

Ans: Polygon
147. The \qquad combines the volumes occupied by overlapping 3D objects using set operations a)Beam penetration b) CSG Method
c)Sweep representation d)None of the above

Ans: CSG Method
148. A \qquad is a data structure that recursively subdivides a plane into 4 quadrants
a)Octree
b)4-way tree
c) quadtree
d) 4-way mesh

Ans: quadtree
149. Identify the methods for Constructive Solid Geometry operations
a) Ray casting b) Ray tracing c) Beam penetraion
d) Ray sorting

Ans: Ray casting
150. \qquad solid representation take advantage of spatial coherence to reduce the storage representations.
a) Sweep representation
b)Octree
c) Polygon surfaces
d) CSG

Ans: Octree
151. \qquad is a data element to store the pixels within an octant having same color
a) Voxel
b) Void
c) Tex
d) Flag

Ans: Voxel
152. Empty regions of the space are represented by type \qquad
a) int b) void c) null d) empty

Ans: void
153. If all the pixels within an octant have the same color, it is referred to as \qquad
a) Heterogeneous octant
b) Homogeneous octant
c) Simultaneous octant
d) Similar octant

Ans: Homogeneous octant
154. \qquad is a label set of output primitives and its associated attributes.
a) Structure
b) Function
c) Table
d) List

Ans: Structure
155. \qquad enables easy modification to each picture element
a) Structure
b) Function
c) Table
d) List

Ans: Structure
156. A structure is created using the function \qquad
a) initstructure()
b) startstructure()
c) openstructure()
d) none

Ans: openstructure()
157. \qquad is the reference portion value of each structure element.
a) element pointer
b) index
c)attribute
d)attribute index

Ans: element pointer
158. Identify the following data structure.
" If a region is uniform, store its properties. If a region is non-uniform, subdivide it and repeat the process"
a) Octree
b) List
c) Table
d) Polygon surface

Ans: Octree
159. Identify the data structures that works on divide and conquer strategy.
a) List
b) Table
c) Octree
d) Pointer

Ans: Octree
160. \qquad can be produced by interpolating shading patterns across the polygon surfaces to eliminate or reduce the presence of polygon edge boundaries.
a) Rasterizing
b) Rendering
c) Smoothing
d)None

Ans: Rendering
161. \qquad function is used to display a structure on the screen.
a) poststructure()
b) displaystructure()
c) enablestructure()
d) structurepost()

Ans: poststructure()
162. All structures can be removed from the screen using the function \qquad
a) deletestructure()
b) unpoststructure()
c) removestructure()
d) unposalltstructures()

Ans: unpostallstructures()
163. In \qquad ..representation, an octree is decomposed into identical cells arranged in a fixed regular grid.
a)cell
b) voxel
c) pixel
d) array

Ans: voxel
164. Identify the odd one out
a) Input mode b) Accept mode
c) Sample mode
d) Event mode

Ans: Accept mode
165. The typical input operation in a general programming language will be in \qquad mode
a) Sample
b) request
c) Event
d) Read

Ans: request
166. Identify the input mode in which the application program initiates data entry.
a) Sample
b) request
c) Event
d) Read

Ans: request
167. In \qquad input mode, the input devices initiates data input to the application program.
a) Sample
b) request
c) Event
d) Read

Ans: Event
168. The maximum number of devices that can provide input in request mode is \qquad
a) 2
b) 4
c) Any number of devices
d) 1

Ans: 1
169. When an input device is placed in event mode, data input from the device is accumulated in
a)Event queue b)Read queue c)Device list
d) None

Ans: Event queue
170. The device for specifying a coordinate position (x, y) is known as \qquad
a) String device
b) Stroke device
c) Valuator device
d) Locator device

Ans: Locator device
171. Which device is suitable to input a series of coordinate positions.
a) Locator
b) Stroke
c) Valuator
d) String

Ans: Stroke
172. \qquad device is used to specify scalar values.
a) Locator
b) Stroke
c) Valuator
d) String

Ans: Valuator
173. \qquad enables selection of picture components.
a) PICK
b) LOCATOR
c) STROKE
d) CHOICE

Ans: PICK
174. Choice devices are suitable to select
a) Scalar values
b) Menu options
c) Text input d) Pictute components

Ans: Menu options
175. Identify the string device from the following
a) Mouse
b) Webcam
c) Keyboard
d) Joystick

Ans: Keyboard
176. In \qquad picture construction, the entity shape and size is dynamically changed with every mouse movement
a) Gravity
b) Rubber band
c) Constraint
d) Painting

Ans: Rubber band
177. \qquad technique is employed for drawing entities using mouse only.
a)) Gravity
b) Rubber band
c) Constraint d) Painting

Ans: Rubber band
178. \qquad constraint forces the input point to the nearest intersection on a grid.
a) Directional
b) Homogeneous
c) Modular
d)Gravity

Ans: Modular
179. \qquad is a type of window which is involked by an application when mutiple inputs are required to specify the desired action.
a) Dialog box
b) Panel
c) Icon
d)Menu

Ans: Dialog box
180. Symbolic representation of some object or process is called
a) Icons
b) Menu
c) List d) Label

Ans: Icon
181. \qquad is used to connect a new line to a previously drawn line.
a) Gravity field
b) Rubberband method
c) Paiting
d) None

Ans: Gravity field
182. Give an example for absolute locator device
a) Mouse
b) Touch panel
c) Light pen
d) None

Ans: Touch panel
183. Identify an relative locator device from the following
a) Mouse
b) Touch panel
c) Light pen
d) Keyboard

Ans: Mouse
184. Identify the odd one out
a) Icon
b) Slider
c) Spin box
d) Locator

Ans: Locator
185. Which of the following is a 3D graphics package?
a) Paint
b) AC3D
c) Dreamweaver
d) Lightroom

Ans: AC3D
186. \qquad displays a list of commands
a) Menu
b) List c) Icon d) Checkbox

Ans: Menu
187. \qquad is used to set a value by viewing dynamically the entire data range
a) Menu
b) Slider
c) Spin boxes
d) Text fields

Ans: Slider
188. \qquad is used to select limited choices of predictable values
a) Menu
b) Slider
c) Spin boxes
d) Text field

Ans: Spin boxes
189. The process of calculating the product of matrices of a number of transformations in sequence is called \qquad
a) Concatenation
b) Continuation
c) Mixing
d) None

Ans: Concatenation
190. The point about which an object is rotated is called \qquad
a) Fixed point b) Central point
c) Pivot point d) None

Ans: Pivot point
191. In \qquad mode the program requests input and suspends processing until input is received.
a) Request
b) Event
c) Sample
d) Constraint

Ans: Request
192. Identify odd one out
a) Vector based
b) Hardware based
c) Bitmap based
d) Scanline based

Ans: Scanline based
193. When the polygon surfaces are to be tiled, \qquad is used
a) Polygon net b) Polygon mesh
c) Polygon block
d) Polygon cell

Ans: Polygon mesh
194. \qquad is the practice by which an object is drawn by fixing one (or more) points, and then stretching the remain points out, connected by a line or lines that grow and shrink according to various properties.
a) Rubber banding
b) Gravity
c) Dragging
d) grid

Ans: Rubber banding
195. \qquad is created by revolution of a circle about an axis lying in its plane.
a) Sphere
b) Ellipsoid
c) Torus
d) Cylinder

Ans: Torus
196. A region quad tree with depth of ' n ' may be used to represent an image having resolution
a) 2^{n}
b) 2×2^{n}
c) $2^{n x} 2^{n}$
d) $2 n$

Ans: $2^{\mathrm{nx}} 2^{\mathrm{n}}$
197. \qquad is a true tree because the centre of a subdivision always lies on a point.
a) Region quad tree
b) Edge quad tree
c) Point quad tree
d) Child quad tree

Ans: Point quad tree
198. \qquad is an adaptation of binary tree representing the 2-D point data
a) Region quad tree
b) Edge quad tree
c) Point quad tree
d) Child quad tree

Ans: Point quad tree
199. \qquad quad tree stores line rather than point.
a) Region quad tree
b) Edge quad tree
c) Point quad tree
d) Child quad tree

Ans: Edge quad tree
200. \qquad is commonly used to store sparse data
a) quad tree
b) Table
c) Binary tree d) Octant

Ans: quad tree

