

.....

QP CODE: 24027305

Reg No :

Name

B.Sc DEGREE (CBCS) REGULAR / IMPROVEMENT / REAPPEARANCE EXAMINATIONS, OCTOBER 2024

Third Semester

COMPLEMENTARY COURSE - ST3CMT03 - STATISTICS - PROBABILITY DISTRIBUTIONS

Common to B.Sc Physics Model I, B.Sc Mathematics Model I & B.Sc Computer Applications Model III Triple Main

2017 Admission Onwards

FF81F94D

Time: 3 Hours Max. Marks: 80

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. If first three raw moments are a, b and c respectively, obtain second and third central moments.
- 2. Define characteristic function of a random variable with an example.
- 3. Obtain the mgf of continuous uniform distribution.
- 4. Define Bernoulli distribution.
- 5. Define a standardized binomial random variable.
- 6. Obtain the mean of geometric distribution.
- 7. Define hyper geometric distribution.
- 8. Define one parameter gamma distribution.
- 9. Find the expression for rth raw moment of type 2 beta distribution.
- 10. Mention any two disadvantages of Tchebycheff's inequality.
- 11. Define chi- square distribution.
- 12. Define Snedecor's F distribution.

 $(10 \times 2 = 20)$

Page 1/2 Turn Over

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. Show by an example that expectation of the product is equal to the product of the expectations does not imply that the variables are independent.
- 14. Show that $V(aX + bY) = a^2 V(X) + b^2 V(Y)$ where X and Y are independent random variables.
- 15. X = 0 or 1 according as an unbiased coin when tossed shows head or tail. Write the pdf of X. Obtain its mgf and hence find the first four raw moments.
- 16. Find the mean and variance of two parameter gamma distribution.
- 17. Find the arithmetic mean and harmonic mean of type 1 beta distribution.
- 18. Obtain the mean and mean deviation about mean of normal distribution.
- 19. A sample of size n is taken from a population with mean μ and SD σ . Find the limits within which the sample mean \overline{x} will lie with probability 0.9 by using Tchebycheff's inequality and central limit theorem. Evaluate the limits if n = 64, μ = 10 and σ = 2.
- 20. Derive the sampling distribution of mean of sample taken from normal population.
- 21. Explain an example of a statistic following student's t distribution.

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

- ^{22.} The joint pdf of X and Y is given by $f(x,y)=\frac{x+y}{21}$; x = 1, 2, 3; y = 1, 2. Find (1) V(X) (2) V(Y) (3) COV (X, Y).
- 23. (a) Establish the additive property of Poisson distribution.
 - (b) Derive the recurrence relation for central moments of Poisson distribution and hence find variance, β_1 and β_2 .
- 24. If $f(x) = (1/\mu) e^{-x/\mu}$, x > 0, $\mu > 0$, obtain the expression for r^{th} raw moment. Find mean, SD, interquartile range, β_1 , β_2 .
- 25. (1) State and prove weak law of large numbers.
 - (2) Show that the weak law of large numbers is true for the mean of a random sample of size n from a population with finite mean and variance.

 $(2 \times 15 = 30)$

