

QP CODE: 23104691

Reg No : Name :

B.Sc DEGREE (CBCS) REGULAR/IMPROVEMENT/REAPPEARANCE EXAMINATIONS, FEBRUARY 2023

First Semester

Core Course - MM1CRT01 - FOUNDATION OF MATHEMATICS

(Common to B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science, B.Sc Computer Applications Model III Triple Main)

2017 Admission Onwards

C789FB92

Time: 3 Hours

Max. Marks: 80

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. State distributive laws of equivalence.
- 2. Define Existential quantifier.
- 3. Define Universal instantiation.
- 4. Use Venn diagram to show the relationship A is a subset of B
- 5. Define the sets $A \cup B$ and $A \cap B$.
- 6. Let f_1, f_2 be functions from R to R defined by $f_1(x) = x^2$ and $f_2(x) = x x^2$. What is $(f_1f_2)(x)$?
- 7. Let R be the relation $R = \{(a, b) \mid a \text{ divides } b\}$ on the set of integers. Find R⁻¹.
- 8. Draw the diagraph that represent the relation $\{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$ on $\{1, 2, 3\}$
- 9. Check whether the relation $R = \{(a, b) : a \text{ and } b \text{ are of same age }\}$ an equivalence relation.Explain.
- 10. Frame a quartic equation with rational coefficients one of whose roots is $\sqrt{5} + \sqrt{2}$.

- 11. If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $x^4 + 4x^3 5x^2 8x + 6 = 0$, find the values of $\alpha + \beta + \gamma + \delta$ and $\alpha\beta\gamma\delta$.
- 12. Define biquadratic equation? Write the general form of the quartic equation which can be solved using Ferrari's method?

(10×2=20)

Part B

Answer any **six** questions. Each question carries **5** marks.

- 13. Check whether $p \lor \neg (p \land q)$ a tautology.
- 14. Show that $\exists x [P(x) \land Q(x)]$ and $\exists x P(x) \land \exists x Q(x)$ are not logically equivalent.
- 15. Define Modus tollens and Modus ponens. Write the truth table of the above rules of inference for propositional logic.
- 16. Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$
- 17. Define and plot the greatest integer function
- 18. Let $S = \{1, 2, 3, 4, 5, 6\}$. Show that the collection of sets $A_1 = \{1, 2, 3\}, A_2 = \{4, 5\}$ and $A_3 = \{6\}$ forms a partition of S.List the ordered pairs in the equivalence relation R produced by this partition.
- 19. Determine whether the posets with these Hasse Diagrams are lattices.

- 20. Solve by Cardan's method $x^3 9x 12 = 0$.
- 21. Solve $x^6 9x^5 + 21x^4 21x^2 + 9x 1 = 0$?

(6×5=30)

Part C

Answer any **two** questions. Each question carries **15** marks.

- 22. (a) Prove that $\sqrt{2}$ is irrational by the method of contradiction.
 - (b) Show that the following statements about the integer n are equivalent.
 - (i) n is even
 - (ii) n-1 is odd.
 - (iii) n^2 is even.
- 23. a) Let $f : A \to B$ and S, T be subsets of A. Show that $f(S \cup T) = f(S) \cup f(T)$ and $f(S \cap T) \subseteq f(S) \cap f(T)$ b) Consider the equivalence relation $R = \{(x, y)/x - y \text{ is an integer}\}$. What are the equivalence classes of 1 and $\frac{1}{2}$ for this relation
- 24. Let R and S be relations on a set A represented by the matrices

$$M_{R} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} and M_{S} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
. Find the matrices that represents
(a) $R \cup S$ (b) $R \cap S$ (c) $S \circ R$ (d) $R \circ R$ (e) $R \oplus S$

25. a) If α, β, γ are the roots of $x^3 + px + q = 0$ form the equation whose roots are $\alpha^2 + \beta\gamma, \beta^2 + \gamma\alpha, \gamma^2 + \alpha\beta$.

b) Find the equation whose roots are the roots of $2x^5 - 9x^3 + 4x + 3 = 0$ each increased by 2.