

QP CODE: 25003368

B.Sc DEGREE (CBCS) SPECIAL REAPPEARANCE EXAMINATIONS, FEBRUARY 2025

Fifth Semester

B.Sc Statistics Model I

CORE COURSE - ST5CRT05 - STATISTICAL ESTIMATION THEORY

2022 Admission Only

A3E9F2D9

Time: 3 Hours

Max. Marks: 80

Part A

Answer any ten questions. Each question carries 2 marks.

- Discuss the nature of chi square probability curve. 1.
- 2. Define student's t statistic and write it's pdf.
- 3. Obtain the limiting distribution of t distribution.
- 4. A random sample of size 16 from a normal population with mean 14 is found to have variance 5. Find the probability that the mean of the sample is negative.
- 5. State the sufficient conditions for the consistency of an estimator.
- 6. What is the importance of Factorization theorem?
- 7. Distinguish between MVB and MVU estimators.
- 8 What are the different methods of estimation ?
- $f(x, \theta) = \theta x^{\theta 1}$ Obtain the moment estimate of if the p.d.f. of the population is 9. 0 < x < 1 ; heta > 0 .
- 10. Estimate the parameters of binomial distribution if the mean and variance of a sample are 6 and 3/2.
- 11. Define confidence interval and confidence limits.
- 12. Explain the construction of large sample confidence interval for the proportion of a binomial population.

 $(10 \times 2 = 20)$

Turn Over

Part B

Answer any **six** questions. Each question carries **5** marks.

- 13. Define (i) Parameter, (ii) Statistic (iii) sampling distribution (iv) Standard error . Give one example for each.
- 14. Prove that if $n_1 = n_2$ the median of F distribution is at F = 1 and that the quartiles Q_1 and Q_3 satisfy the condition $Q_1 Q_3 = 1$.
- 15. Define UBE. Let X be distributed in the Poisson form with parameter θ . Show that only UBE of $e^{-(k+1)\theta}$ k > 0 is $T(x) = (-k)^x$.
- 16. Prove that in sampling from $N(\mu, \sigma^2)$ the sample mean and sample median are consistent estimators of μ .
- 17. A random sample $(X_1, X_2, X_3, X_4, X_5)$ of size 5 is drawn from a normal distribution with unknown mean μ . Consider the following estimators to estimate μ .
 - (i) $T_1 = \frac{(X_1+X_2+X_3+X_4+X_5)}{5}$ (ii) $T_1 = \frac{(X_1+X_2)}{2} + X_3$ (iii) $T_3 = \frac{(2X_1+X_2+\lambda X_3)}{3}$ where λ is such that T_3 is UB .Then (a) Find λ (b) Are T_1 and T_2 UB ? (c) State giving reasons the estimator which is best among T_1, T_2 and T_3 .
- 18. Find the m.l.es of the parameters $\mu\,$ and $\,\sigma^2\,$ of the normal distribution $\,N(\mu,\sigma^2)$.
- 19. Obtain the MVUE of ' μ ' based on a random sample of size n taken from $N(\mu, \sigma^2)$ population.
- 20. If a sample 13 ,26 ,14 ,36 ,20 ,25 ,35 ,39 ,44 ,54, 39 is taken from $N(\mu,\sigma^2)$ population , obtain the 95% confidence interval of the mean μ .
- The weight of students studying in plus two standard is assumed to be distributed with S.D. 1.5 . A sample of 100 students have their mean weight 47.5 kg . Find the 95% and 99% confidence interval for mean weight of students.

(6×5=30)

Part C

Answer any **two** questions.

Each question carries **15** marks.

- 22. Obtain the distribution of sample correlation coefficient, r in a random sample taken from an uncorrelated bivariate normal population. Also obtain the distribution of the statistic, $t = \frac{r}{\sqrt{1-r^2}}\sqrt{n-2}$.
- 23. State and prove Rao-Blackwell theorem.

24. (a) Explain the method of maximum likelihood estimation.

(b) If 1.2 ,2.6 ,1.4 ,3.6 ,2.4 ,2.5 ,3.1 ,3.9 ,4.4 ,4.9 are the sample oservations taken from a population with p.d.f. $f(x,\theta) = \frac{1}{\theta}e^{\frac{-x}{\theta}}$; $0 < x < \infty$; $0 < \theta < \infty$. Obtain the m.l.e. of θ

- 25. (a) Explain the construction of large sample confidence interval for the difference of means of two populations.
 - (b) Two random samples taken from two populations resulted the following information.

size	mean	S.D.
160	34	2.5
250	45	2.6

Construct a 99% confidence interval for the difference of means of the populations.

(2×15=30)