

QP CODE: 25022307

Reg No	:	
Name	:	

M.Sc DEGREE (CSS) SPECIAL REAPPEARANCE EXAMINATION, APRIL 2025 Third Semester

M.Sc PHYSICS(MATERIAL SCIENCE)

CORE - PH020303 - ADVANCED QUANTUM MECHANICS

2019 ADMISSION ONWARDS

437A26A9

Time: 3 Hours Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Prove that evolution of interaction picture state ket is determined by perturbing potential V_i
- 2. What is meant by Dyson series?
- 3. Discuss adiabatic approximation.
- 4. Define hard sphere potential.
- 5. What is Resonance scattering?
- 6. Explain the need of relativistic quantum mechanics.
- 7. Write the expression for probability density and probability current density in the Dirac formalism.
- 8. Is Dirac equation Lorentz invariant? Elucidate.
- 9. Show that the annihilation operators commute with each other.
- 10. Write down the Hamiltonian for a Dirac field and show that if commutation relation between the field operators are followed it won't be a positive definite.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

- 11. Show that it is possible to study the emission or absorption of radiation by subjecting the system to a harmonic perturbation. Explain.
- 12. Using time dependent perturbation theory prove that the probabilities for finding the initial state and all other states add up to 1

Page 1/2 Turn Over

- 13. Show that the scattering amplitude bears a relation with scattering cross section.
- 14. Discuss the Born approximation and comment on its validity.
- 15. Give an account of 'Thomas term'. Elaborate its significance.
- 16. What are gamma matrices? Explain their properties.
- 17. What is meant by Lagrangian density? Why is it necessary to define this quantity in the Lagrangian formulation of classical field theory?
- 18. Define functional derivative. Express the Lagrangian field equation in terms of it.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight **5** each.

- 19. Discuss sudden and adiabatic approximation in detail.
- 20. Apply the partial wave method to study the scattering by a square well potential. Explain the phenomenon of resonance.
- 21. Derive the Dirac equation and express it in covariant form. Show that the total angular momentum of a Dirac particle is a constant of motion.
- 22. Explain the quantization of Klein-Gordon field.

(2×5=10 weightage)

