Turn Over

QP CODE: 25010002

Reg No :

B.Sc DEGREE (CBCS) SPECIAL REAPPEARANCE EXAMINATIONS, FEBRUARY 2025

Fifth Semester

CORE COURSE - MM5CRT01 - MATHEMATICAL ANALYSIS

Common for B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science & B.Sc Computer Applications Model III Triple Main

2022 Admission Only

891EB84A

Time: 3 Hours

Max. Marks : 80

Part A

Answer any **ten** questions. Each question carries **2** marks.

- 1. Exhibit a bijection between N the set of natural numbers and the set of all odd numbers greater than 12.
- 2. Define absolute value function.
- 3. Prove that $a \leq b \,$ for all $a \in A, b \in B$ imply that $SupA \leq SupB.$
- 4. If t > 0 prove that there exist an $n_t \in N$ such that $0 < rac{1}{n_t} < t.$
- 5. Prove that $lim(\frac{1}{n}) = 0$.
- 6. Prove that $lim(rac{2n}{n^2+1})=0.$
- 7. Write a short note on Euler number.
- 8. Give an example of an unbounded sequence that has a convergent subsequence. Explain.

Page 1/3

- 9. Let (x_n) and (y_n) be two sequences of positive real numbers and suppose that for some positive real number L, $lim(\frac{x_n}{y_n}) = L$, then prove that $\lim x_n = +\infty$ if and only if $\lim y_n = +\infty$.
- 10. If a series in ${\mathbb R}$ is absolutely convergent, then it is convergent.

- 11. Define an Alternating Series. Give an example.
- 12. True or False " The limit of a function f exist at a point c only if f is defined at c". Give justifications.

(10×2=20)

Part B

Answer any **six** questions.

Each question carries **5** marks.

- 13. State and prove characterisation of intervals theorem.
- 14. Prove that $x \in [0, 1]$ then the binary representation of x forms a sequnce consisting only 0, 1 ?
- 15. If c > 0, prove that $\lim (c^{1/n}) = 1$.
- 16. Let $X = (x_n)$ and $Y = (y_n)$ be sequences of real numbers that converges to x and y respectively. Prove that the sequences X+Y converges to x+y.
- 17. Let Y = (y_n) be the sequence defined as y₁ = 1 and y_{n+1} = $\frac{2y_n+3}{4}$, $n \ge 1$. Prove that lim Y = $\frac{3}{2}$.
- 18. State and prove comparison test for real sequences.
- 19. Test the convergence and absolute convergence of the series whose nth term is $\frac{n^n}{(n+1)^{n+1}}$.
- 20. Check whether the one-sided limits of the function $g(x) = e^{\frac{1}{x}}$ at x = 0 exist or not.
- 21. Give an example of a function that has a right-hand limit but not a left-hand limit at a point.

(6×5=30)

Part C

Answer any **two** questions. Each question carries **15** marks.

- 22. Prove that the set of all real numbers is a complete ordered field.
- 23. (a) State and prove Cauchy Convergence Criterion. (b) Let Y = (y_n) be the sequence of real numbers defined as $y_1 = 1$, $y_2 = \frac{1}{1!} - \frac{1}{2!}$,..., $y_n = \frac{1}{1!} - \frac{1}{2!} + \ldots + \frac{(-1)^{n+1}}{n!}$. Prove that sequence Y is convergent.
- 24. State and prove Raabe's test. Use this test to study the convergence of $\sum_{1}^{\infty} \left(\frac{n}{(n^2+1)}\right)$.

- 25. (a) Let $f: A \to \mathscr{R}$ and c be a cluster point of A. Then prove the following are equivalent.
 - $\lim_{x \to c} f = L.$
 - For every sequence (x_n) in A that converges to c such that $x_n
 eq c$ for all $n \in \mathscr{N}$,the sequence $(f(x_n))$ converges to L.
 - (b) Show that $\lim_{x o 0} sgn(x)$ does not exist , Where sgn is the signum function.

(2×15=30)