

.....

:

Name

B.Sc DEGREE (CBCS) REGULAR / IMPROVEMENT / REAPPEARANCE **EXAMINATIONS, MAY 2024**

Second Semester

Core Course - MM2CRT01 - MATHEMATICS - ANALYTIC GEOMETRY, TRIGONOMETRY AND DIFFERENTIAL CALCULUS

(Common for B.Sc Computer Applications Model III Triple Main, B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science)

2017 ADMISSION ONWARDS

0835921B

Time: 3 Hours

Max. Marks: 80

Part A

Answer any ten questions.

Each question carries 2 marks.

- Derive the condition that the line y = mx + c is a tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{h^2} = 1$. 1.
- 2. Show that two tangents can be drawn from any point to a hyperbola.
- Find the orthoptic locus of the parabola $y^2 = 4ax$. 3.
- Derive the equation of chord of contact of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1.$ 4.
- 5. Find the cartesian coordinate corresponding to the polar coordinate (3,0).

Page 1/3

- Find the equation for a circle centered at the pole. Give an example. 6.
- 7. Prove that sin(x+y) = sinx cosy + cosx siny.
- 8. Define Hyperbolic functions.
- 9. Factorize $x^9 + 1$.
- 10. Find the nth derivative of $log_e(ax + b)$.
- ^{11.} Using Leibnitz's theorem find the nth derivative of e^xlogx.
- 12. State L' Hospital's rule of limits.

 $(10 \times 2 = 20)$

Part B

Answer any **six** questions.

Each question carries **5** marks.

- 13. Prove that the tangent at the exteremity of a diameter of a parabola is parallel to the system of chords it bisects.
- ^{14.} The polar of a point P with respect to the parabola $y^2 = 4ax$ meets the curve in Q and R. Show that if P lies on the line lx + my + n = 0, then the middle point of QR lies in the parabola $l(y^2 - 4ax) + 2a(lx + my + n) = 0$.
- 15. Show that the locus of the poles of normal chords of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is the curve $y^2 a^6 x^2 b^6 = (a^2 + b^2)^2 x^2 y^2$.
- 16. Prove that the acute angle between two conjugate diameters of an ellipse is minimum when they are equal. Also find the minimum angle.
- 17. If the normal at P on a conic meets the axis in G, then SG = e. SP, where S is the focus.
- 18. If sin(A + iB) = x + iy, show that

(i)
$$rac{x^2}{cosh^2B} + rac{y^2}{sinh^2B} = 1$$

(ii) $rac{x^2}{sin^2A} - rac{y^2}{cos^2A} = 1$

- 19. Sum the series $1 + ccosh\alpha + c^2 cosh2\alpha + \ldots + c^{n-1} cosh(n-1)\alpha$, where c is less than unity.
- 20. If $y = [x + \sqrt{1 + x^2}]^m$, show that $(1 + x^2) rac{d^2 y}{dx^2} + x rac{dy}{dx} m^2 y = 0$
- 21. Find $lim_{x\to 0}\left[\frac{tanx}{x}\right]^{\frac{1}{x}}$.

(6×5=30)

Part C

Answer any **two** questions.

Each question carries **15** marks.

22. Prove that

(a) The tangents at the extremities of a diameter of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, are parallel to the diameter conjugate to it.

(b) The tangents at the extremities of a chord of an ellipse will intersect on the diameter conjugate to the diameter parallel to the given chord.

(c) The eccentric angles of the ends of a pair of conjugate diameters differ by a right angle.

- 23. If two conics have a common focus, show that two of their common chords pass through the point of intersection of their directrices.
- 24. Sum the series
 - (i) $ccos\alpha \frac{1}{3}c^3cos(\alpha + 2\beta) + \frac{1}{5}c^5cos(\alpha + 4\beta) \dots$ (ii) $sin\alpha sin\beta + \frac{1}{2}sin2\alpha sin2\beta + \frac{1}{3}sin3\alpha sin3\beta + \dots$
- 25. (a) Show that the nth derivative of $y = \frac{1}{1+x+x^2+x^3}$ is $\frac{1}{2}(-1)^n n! sin^{n+1} \theta[sin(n+1)\theta - cos(n+1)\theta + (sin\theta + cos\theta)^{-n-1}]$ where $\theta = cot^{-1}x$. (b) Find the nth derivative of $\frac{1}{(x-1)^2(x-2)}$.

(2×15=30)