QP CODE: 25022252

M.Sc DEGREE (CSS) SPECIAL REAPPEARANCE EXAMINATION, APRIL 2025

Third Semester

CORE - ME010305 - OPTIMIZATION TECHNIQUE

M.Sc MATHEMATICS , M.Sc MATHEMATICS (SF)

2019 ADMISSION ONWARDS

2515062B

Time: 3 Hours


Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Write the dual of the following LP problem and verify that the dual of the dual is primal. Minimize $f(X) = 12x_1 + 9x_2$, Subject to $2x_1 - x_2 \le 5, 3x_1 + 5x_2 \ge 9; x_1, x_2 \ge 0$.
- 2. To find the optimum value of a primal problem, it is enough to find the optimum value of its dual. Isn't true? Justify.
- 3. Define related LP problem and Associated LP problem with respect to an ILPP.
- 4. What you meant be Either Or constraint.
- 5. Define the following with suitable example.(i) Graph (ii) Cycle (iii) Arborescence
- 6. Explain minimum path problem.
- 7. Write short note on scheduling sequential activity.
- 8. What you mean by perturbation?
- 9. Minimize $f(X) = x^2 + y^2 + 2$ subject x+y=3.
- 10. Write down the Lagrange function and K-T conditions of NLP Maximize $f(x)=8x_1+10x_2-x_1^2-x_2^2$ subject to $3x_1+2x_2\leq 6; x_1,x_2\geq 0$.

(8×1=8 weightage)

2

2

Reg No

Name

.....

.....

Weightage: 30

25022252

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight 2 each.

- 11. Define canonical form of equations. What is the advantage of putting the equations in a canonical form?
- 12. Derive the formula $\pi' = -C_0 A_0^{-1}$ where π is the multiplier vector.
- 13. Solve graphically: $Minf(X) = x_1 + x_2$ subject to $2x_1 \le 3, 2x_1 + 2x_2 \ge 5, -2x_1 + 2x_2 \le 1, x_1, x_2$ are non-negative.
- 14. Derive Gomory's fractional cut.
- 15. Write short note about goal programming A factory can manufacture two products A and B. The profit on a unit of A is Rs. 80 and of B is Rs. 40. The maximum demand of A is 6 units per week and B is 8 units per week. This manufacturer has set a goal of achieving a profit of Rs. 640 per week. Formulate the problem as goal programming and solve it.
- 16. State and prove maximum flow minimum cut theorem.
- 17. Express the function $7x_1^2 + 10x_2^2 + 7x_3^2 4x_1x_2 + 2x_1x_3 4x_2x_3$ in the form X'QX. Is it convex or not?
- 18. Define gradient vector and Hessian matrix. Minimize $f(X)=3x_1^6+5x_2^4+x_2^3$.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. Solve the following LPP using simplex method Maximize $f(X) = 4x_1 + 5x_2$ Subject to $x_1 - 2x_2 \le 2, 2x_1 + x_2 \le 6, x_1 + 2x_2 \le 5, -x_1 + x_2 \le 2, x_1 \ge 0, x_2 \ge 0$
- 20. Solve using Branch and Bound method $Minf(X) = 2x_1 + 3x_2$ subject to $2x_1 + 2x_2 \le 7, 0 \le x_1 \le 2, 0 \le x_2 \le 2, x_1 \ge 0, x_2 \ge 0$ and x_1, x_2 are integers.
- 21. Find the minimum spanning tree in the following undirected graph.

Arc	(1,2)	(1,3)	(1,4)	(2,3)	(2,8)	(2,10))3,4)	(3,8)	(4,5)	(4,6)
Length	7	4	8	3	9	14	4	10	15	12
Arc	(4,8)	(5,6)	(5,7)	(6,7)	(6,8)	(6,9)	(7,9)	(8,9)	(8,10)	(9,10)
Length	10	8	1	2	20	16	18	3	4	6

22. Maximize the function $f(x) = -3x^2 + 21.6x + 1.0$ with a minimum resolution of $\epsilon = 0.5$ over 6 functional evaluations. The optimal value of f(x) is assumed to lie in the range $25 \ge x \ge 0$.

(2×5=10 weightage)

