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Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.
 

1.  Prove that  is a harmonic function.

2.  State Schwarz's theorem.

3.  Write the Taylor series expansion of arc tanz about the origin.

4.  Expand   as  Laurent’s series in powers of  z. 

5.  State  Mittag-Leffler’s theorem.

6.  Prove that .

7.  Prove that a sequence of functions in   converges uniformly to f on compact subsets if and only if it
converges to f with respect to the distance function  in .

8.  State Arzela- Ascoli's theorem.

9.  What is meant by the boundary behavior?

10.  Prove that 
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Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.
 

11.  Prove that if  is analytic in a region  then  is analytic in .

12.  State and prove Harnack’s inequality.

13.  Prove that a necessary and sufficient condition for the absolute convergence of the product 
  is the convergence of the series  

14.  Obtain a formula for  Deduce 

15.  Prove that   where  are ascending sequence of primes and  

16.  Prove  is entire and  where 

17.  Define the Riemann mapping. Let be a simply connected region other than the complex plane.
Prove that the Riemann mapping from to the unit disk is  unique.

18.  Prove that an elliptic function cannot have a single simple pole.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.
 

19.  Define a subharmonic function. State  and prove any three properties.

20.  Obtain Jensen’s formula. Deduce Poisson-Jensen formula.

21.  (i) Prove that  has no zeros in the half plane .
(ii) Differentiate between the trivial and non trivial zeros of the Zeta function.

22.  (a)Define Weirstrass’  -function .
(b) Exoress Weirstrass’  -function as a Laurent series about the origin. 

(c ) Prove that  .

(2×5=10 weightage)
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