.....

M.Sc DEGREE (CSS) SPECIAL REAPPEARANCE EXAMINATION, APRIL 2025

Third Semester

CORE - ME010301 - ADVANCED COMPLEX ANALYSIS

M.Sc MATHEMATICS, M.Sc MATHEMATICS (SF)

2019 ADMISSION ONWARDS

C6FAB2FB

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. Prove that *logr* is a harmonic function.
- 2. State Schwarz's theorem.
- 3. Write the Taylor series expansion of arc tanz about the origin.
- 4. Expand $f(z) = \frac{1}{z(z-1)}$ as Laurent's series in powers of z.
- 5. State Mittag-Leffler's theorem.
- 6. Prove that $\zeta(s)\Gamma(s) = \int_0^\infty rac{x^{s-1}}{e^x-1} dx$ for $\sigma = Res > 1$.
- 7. Prove that a sequence of functions in \mathcal{F} converges uniformly to f on compact subsets if and only if it converges to f with respect to the distance function ρ in \mathcal{F} .
- 8. State Arzela- Ascoli's theorem.
- 9. What is meant by the boundary behavior?
- 10. Prove that $\wp(2z) = \frac{1}{4} [\frac{\wp''(z)}{\wp'(z)}]^2 2\wp(z)$

(8×1=8 weightage)

Reg No Name 5

QP CODE: 25022244

Part B (Short Essay/Problems) Answer any six questions. Weight 2 each.

- 11. Prove that if f(z) is analytic in a region Ω , then $\overline{f(\overline{z})}$ is analytic in $\Omega^* = \{\overline{z}; z \in \Omega\}$.
- 12. State and prove *Harnack's* inequality.
- 13. Prove that a necessary and sufficient condition for the absolute convergence of the product $\Pi_1^{\infty}(1+a_n)$ is the convergence of the series $\Sigma_1^{\infty}|a_n|$.
- 14. Obtain a formula for $\Gamma(z)\Gamma(1-z)$. Deduce $\Gamma(\frac{1}{2})$.
- 15. Prove that $\frac{1}{\zeta(s)} = \prod_{n=1}^{\infty} (1 p_n^{-s})$ where p_1, p_2, \ldots are ascending sequence of primes and $\sigma = Re$ s > 1.
- 16. *Prove* $\xi(s)$ *is entire and* $\xi(s) = \xi(1-s)$ *where* $\xi(s) = \frac{1}{2}s(1-s)\pi^{-(\frac{s}{2})}\Gamma(\frac{s}{2})\zeta(s)$.
- 17. Define the Riemann mapping. Let Ω be a simply connected region other than the complex plane. Prove that the Riemann mapping from Ω to the unit disk is unique.
- 18. Prove that an elliptic function cannot have a single simple pole.

(6×2=12 weightage)

Part C (Essay Type Questions) Answer any two questions. Weight 5 each.

- 19. Define a subharmonic function. State and prove any three properties.
- 20. Obtain Jensen's formula. Deduce Poisson-Jensen formula.
- 21. (i) Prove that $\zeta(s)$ has no zeros in the half plane $\sigma > 1$. (ii) Differentiate between the trivial and non trivial zeros of the Zeta function.
- 22. (a)Define Weirstrass' \wp -function .
 - (b) Exoress Weirstrass' \wp -function as a Laurent series about the origin.

(c) Prove that
$$\wp(z)=rac{1}{z^2}+\sum_{\omega
eq 0}(rac{1}{(z-\omega)^2}-rac{1}{\omega^2}$$
 .

(2×5=10 weightage)

