

## **M.Sc DEGREE (CSS) SPECIAL REAPPEARANCE EXAMINATION, APRIL 2025**

## **Third Semester**

M.Sc INDUSTRIAL CHEMISTRY

## CORE - CH060301 - THEORETICAL CHEMISTRY - II

2020 ADMISSION ONWARDS

90B7B27F

Time: 3 Hours

#### Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1 Construct the Hamiltonian for any two-electron system and explain the terms involved.
- 2. Two angular momenta with quantum numbers  $j_1 = 3/2$  and  $j_2 = 5/2$  are added together. What are the possible values of J for the resultant angular momentum states?
- Write down the form of the Hartree potential for the interaction between the 2nd and 4th electron in a ten-3. electron system.
- 4. Describe the important features of the Gaussian orbitals.
- 5. Express the Hamiltonian operator for a hydrogen molecule in atomic units.
- Adopting the LCAO-MO scheme, obtain the wavefunction for the BMO for a heteronuclear diatomic 6. molecule AB, assuming that the electron on an average spends 90% of its time on nucleus A and 10% of its time on nucleus B.
- 7. Find the inverse of the matrix



- 8. Is it possible to assign the symmetry of the p orbitals of oxygen in H<sub>2</sub>O molecule? If so, what is their symmetry?
- Discuss the principle of electronic spectroscopy. Q
- Calculate the ionization energy of a helium atom by using the Hartree-Fock energy of the helium and the 10. exact energy of a helium ion.

(8×1=8 weightage)



.....

.....

Ξ.

:

Reg No

Name





Weightage: 30



# Part B (Short Essay/Problems)

# Answer any **six** questions.

### Weight 2 each.

- 11. Obtain total wavefunction for the ground state of helium atom from the spatial and spin functions.
- 12. Obtain the derivation of the Hohenberg theorem.
- 13. Construct the three normalized  $sp^2$  hybrid orbitals and specify their directional properties.
- 14. Calculate the energy levels for benzene molecule using the HMO theory and find the wavelength of the light for the lowest energy transition.
- 15. Distinguish between  $D_nh$  and  $D_nd$  point groups.
- 16. Reduce the following total representation using the character table (Character table is given below).

| T <sub>d</sub> | Е | 8C3 | 3C <sub>2</sub> | 6S <sub>4</sub> | 6σd |
|----------------|---|-----|-----------------|-----------------|-----|
| Γ              | 8 | -1  | 4               | 0               | 2   |

Character Table for Td point group

|                | E | 8C <sub>3</sub> | 3C <sub>2</sub> | 6S <sub>4</sub> | 6σ <sub>d</sub> | linear,<br>rotations | quadratic                                       |
|----------------|---|-----------------|-----------------|-----------------|-----------------|----------------------|-------------------------------------------------|
| A <sub>1</sub> | 1 | 1               | 1               | 1               | 1               |                      |                                                 |
| A <sub>2</sub> | 1 | 1               | 1               | -1              | -1              |                      |                                                 |
| E              | 2 | -1              | 2               | 0               | 0               |                      | z <sup>2</sup> , x <sup>2</sup> -y <sup>2</sup> |
| Т <sub>1</sub> | 3 | 0               | -1              | 1               | -1              | $(R_x, R_y, R_z)$    |                                                 |
| T <sub>2</sub> | 3 | 0               | -1              | -1              | 1               | (x,y,z)              | xy, xz, yz                                      |

- 17. Discuss the significance of transition moment integral and transition moment operator in vibrational spectroscopy.
- 18. How are the number of infrared active and Raman active vibrations are identified using group theory?

(6×2=12 weightage)

### Part C (Essay Type Questions)

Answer any **two** questions.

Weight 5 each.

- 19. Elaborate on the Hartree-Fock method of the self-consistent field (HF-SCF) and evaluate the important results of this approximation to closed-shell multielectron systems.
- 20. Compare and contrast the basic principles of different computational methods in chemistry and discuss the important applications of computational chemistry.





- 21. Solve the Schrodinger equation for the hydrogen molecule-ion, adopting the LCAO method, to obtain expressions for the normalized bonding and antibonding MO wavefunctions. Pictorially illustrate the these wavefunctions and their squares.
- 22. Explain the construction and content of a character table and give its important applications. Construct the character table for  $C_2v$  point group.

(2×5=10 weightage)