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Part A

Answer any ten questions.

Each question carries 2 marks.
 

1.  Define Interior point and Boundary point in terms of neighbourhood 

2.  Find f'(z) where f(z)=  where z

3.  If u+iv is analytic, then under what condition will v+iu be analytic

4.  Find ii and its principal value

5.  Separate the real and imaginary parts of Sinhz.

6.  Define Simple closed curve.

7.  What is the value of  where C is the line segment z=x, 

8.  Define simply connected and multiply connected domain.

9.  Define the limit of an infinite sequence of complex numbers.

10.  With the aid of the identity   ,  expand  into a Taylor series
about the point 

11.  State Cauchy's Residue Theorem.

12.  Prove that if the improper integral over  exists, then its Cauchy Principal
Value exists.
 

(10×2=20)

Part B

Answer any six questions.

Each question carries 5 marks.
 

13.  If a function is analytic,Show that it is independent of 
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14.  Prove that |exp(-2z)|<1 if and only if Re(z)>0

15.  Find where  is analytic

16.  Evaluate  where C is the circle |z|=1.

17.  Evaluate  Where C is the circle  oriented counterclockwise

18.  State and prove Cauchy's inequality.

19.  Use Maclaurin's series expansion of  to obtain such a series for 
 

20.  Using residues, evaluate    where C is the unit circle about the origin.

 

21.  State the characterization of poles of order   of a complex function  and the formula

for residue at   of the poles  of order  . Find the residue at  of  .

(6×5=30)

Part C

Answer any two questions.

Each question carries 15 marks.
 

22.  a) State and prove the sufficient condition for a function f(z) to be differentiable.
b) Show that the function f(z) =ln(|z|)+i Arg(z)  is analytic onits domain of definition and

f'(z)=

23.  
Prove that any polynomial of degree n has atleast one zero
State and Prove Liouvilles theorem

24.  a)    Derive the Laurent series expansion of   in terms of   , if 

b)   Let   . Use Laurent series expansion to prove that

      

c)   Show that for           

25.  Define the Removable singular points, essential singular points and a pole of order  , of
a complex function with examples. Verify the examples with their series representations.
 

(2×15=30)
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