Turn Over

(10×2=20)



## Name Ξ.

# B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS, MARCH 2024

# **Sixth Semester**

## CHOICE BASED CORE COURSE - MM6CBT03 - NUMERICAL ANALYSIS

Common for B.Sc Mathematics Model I & B.Sc Mathematics Model II Computer Science

2017 Admission Onwards

5BA9F519

Time: 3 Hours

Max. Marks: 80

Part A

Answer any ten questions. Each question carries 2 marks.

- 1. State iteration method to find the root of an equation f(x) = 0.
- Give the formula for finding the root of the equation f(x) = 0 using Aitken's  $\Delta^2$ -2. process.
- What is generalized Newton's formula? 3.
- 4. Explain Ramanujan's method to find a smallest root of the equation f(x) = 0.
- 5. Derive the formula for third order backward difference.
- Prove that a)  $E \equiv 1 + \Delta$  b)  $\nabla = 1 E^{-1}$ . 6.
- What is called method of separation of symbols? 7.
- Define Discrete Fourier Transform (DFT). 8.
- 9. Define Inverse Discrete Fourier Transform IDFT.
- 10. Define Truncation and Rounding error in numerical Differentiation.
- 11. Write General formula for Numerical Integration using Newtons forward difference formula.

Page 1/3

12. Evaluate the integral  $\int_0^{0.4} y dx$  using Booles rule for numerical integration.

| х    | 0 | 0.1    | 0.2    | 0.3    | 0.4    |
|------|---|--------|--------|--------|--------|
| f(x) | 0 | 0.0100 | 0.0400 | 0.0899 | 0.1593 |



.....

5

Reg No



QP CODE: 24001065

#### Part B

#### Answer any six questions.

## Each question carries **5** marks.

- <sup>13.</sup> Find a real root of the equation  $x^3 x^2 1 = 0$  by regula-falsi method.
- 14. Use the Newton-Raphson method to find a root of the equation xsinx + cosx = 0.
- 15. Write a shortnote on errors in polynomial interpolation.
- 16. Write the forward difference table.
- 17. The table below gives the values of tan x for  $0.10 \le x \le 0.30$ . Find tan 0.50.

| x | 0.10   | 0.15   | 0.20   | 0.25   | 0.30   |
|---|--------|--------|--------|--------|--------|
| у | 0.1003 | 0.1511 | 0.2027 | 0.2553 | 0.3093 |

- 18. Explain the difference between Fourier series and Fouries Transform.
- 19. The following table gives angular diplacements  $\theta$  (in radians) at different times t(seconds):

| t 0.052 0.105 0.168 0.242 0.327 0.408 0.489 | $\theta$ | 0     | 0.02  | 0.04  | 0.06  | 0.08  | 0.10  | 0.12  |
|---------------------------------------------|----------|-------|-------|-------|-------|-------|-------|-------|
|                                             | t        | 0.052 | 0.105 | 0.168 | 0.242 | 0.327 | 0.408 | 0.489 |

Calculate the angular velocity at t = 0.06.

- 20. Derive the Trapezoidal Rule from the general formula and evaluate  $\int_0^{\pi} x sinx dx$ , with five ordinates.
- 21. Integrate  $\cos x^2$  from "0" to "1" by simpsons  $\frac{1}{3}$  rule with h = 0.25.

(6×5=30)

#### Part C

Answer any **two** questions.

Each question carries **15** marks.

- 22. (i) Explain the bisection method for finding a real root of the equation f(x) = 0. (ii) Find a real root, which lies between 0 and 1, of the equation  $x = e^{-x}$  using bisection method to a tolerance of 0.05%.
- 23. a) Write a short note on Newton's forward difference formula. b) Using Newton's forwad difference formula, find the sum $S_n = 1^3 + 2^3 + 3^3 + \ldots + n^3.$

24. Find the Fourier Series of the function defined by 
$$f(t) = \begin{cases} -1, & ext{if } -\pi < t < 0. \\ 0, & ext{if } t = 0. \\ 1, & ext{if } 0 < t < \pi. \end{cases}$$





- 25. Find the value of  $\int_1^5 log x dx$  taking 8 sub interval , correct upto four decimal places by
  - (a) Simpsons 1/3 rule
  - (b) Trapezoidal rule
  - (c) Simpsons 3/8 rule

(2×15=30)