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Part A
Answer any ten questions.

Each question carries 2 marks.

1. Find the component equation and simplified component equation for the plane through
Py(—3,0,7) perpendicular ton = 5i 4 2j — k.

2. Give the parametrization of a helix.

3. Find the arc length parameter along the helix r(¢) = (cost)i + (sint)j + tk from
totot.

4. Define gradient vector of a scalar function f(z,y, 2).
5. Define Curl of a vector field F.
6. Find the divergence of the vector field F' = xi + yj + zk.

7. Check whether the following set S of integers constitute a complete set of residues

modulo 7 or not;
S = {—12, —4,11,13, 22,82, 91}.

8. State Wilson's theorem.
9. Define Euler phi-function with example.
10. Find £ (t? + 3)2.

. Find £} {—21 - }

S+5
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13.

14.
15.

16.

17.

18.

19.

20.

21.

22.
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Evaluate & 1 [ﬁ] using convolution theorem,
S w

(10%2=20)
Part B

Answer any six questions.

Each question carries 5 marks.

Represent the directional derivative of a differentiable function in the plane as a dot
product.
Also, find the directions in which f(z, y) = (2% /2) + (y*/2)

1. increases most rapidly at the point (1, 1).
2. decreases most rapidly at (1, 1).
3. having zero change in f at (1,1).

Define the tangent plane and the normal line at a point on a smooth surface in space.
Find the plane tangent to the surface z = z cos y — ye® at (0, 0, 0).

Evaluate the line integral [(2zcosy)dz — (z*siny)dy along the parabola
y = (z —1)? from (1,0) to (0,1).

Find a parametrization of the cylinder (z — 3)2 +92=9,0<2<5.

Integrate G(m, Y, z) = xyz over the triangular surface with vertices
(1,0,0),(0,2,0) and (0,1,1).

Derive the congruence: a'* = a (mod 3.7.13) for all a.

Let n be a composite square-free integer, say, n = p1p2. . . pr,where the p; are distinct
primes.
Ifp; — 1|(n — 1) fori =1,2,...,r, then prove that n is an absolute pseudoprime.
. 1 s2 42545
Find 2 e )
Using Laplace Transform, solve y’ — 6y = 0, y(2) = 4.
(6x5=30)
Part C
Answer any two questions.

Each question carries 15 marks.

1. Find and graph the osculating circle of the parabola y = z? at the origin.
2. Find the curvature for the helix
r(t) = (acost)i+ (asint)j + btk,a,b > 0,a® + b* # 0.
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23. State Green's Theorem and apply it to find the counter clockwise circulation and outward
flux for the field F' = (z — y)i + (y — x)j and the curve C' is bounded by the square
r=0,z=1y=0,y=1.

24. 1. State and prove Fermat's theorem.
2.Is the converse of Fermat's theorem is true or false? Give justifications.

25.
1. Using Laplace Transform, solve

y" 4+ 2y + by =50t — 150, y(3) = —4, y'(3) = 14.
2. Solve the Volterra integral equation of the second kind

y(t) — [} y(r)sin(t — 7)dr = t.

(2x15=30)
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