

QP CODE: 25019385

Reg No	:	
Name	:	

B.Sc DEGREE (CBCS)) REGULAR/ IMPROVEMENT/ REAPPEARANCE / MERCY CHANCE EXAMINATIONS, FEBRUARY 2025

Fourth Semester

B.Sc Mathematics Model II Computer Science

Complementary Course - MM4CMT02 - MATHEMATICS - OPERATIONS RESEARCH - NON LINEAR PROGRAMMING

2017 Admission Onwards

6E221697

Time: 3 Hours

Part A

Answer any **ten** questions. Each question carries **2** marks.

- 1. Using graphical method, list all integer feasible solutions of $\operatorname{Min} x_1 x_2$ subject to $2x_1 + 3x_2 \leq 6, x_1, x_2 \geq 0$ and x_1, x_2 are integers
- 2. Define T_F and $[T]_F$ in Integer Programming Problem.
- 3. What are the advantages of cutting plane method?
- 4. Find a suiatable cutting plane for the ILP $Max \; x_1 + 2x_2$ $Subject \; to \; 2x_2 \leq 7 \;, \; x_1 + x_2 \leq 7, 2x_1 \leq 11, x_1 \geq 0, x_2 \geq 0$
- 5. Give and example of a Nonlinear Programming problem.
- 6. Define Lagrangian Function.
- 7. State Kuhn-Tucker Theorem.
- 8. Write the Lagrangian function for Minimize $-2x_1-3x_2$ subject to $2x_1+2x_2\leq 7, 0\leq x_1\leq 2, 0\leq x_2\leq 2, x_1, x_2\geq 0$
- 9. Mark on the graph the set of feasible solutions of $(x_1-1)(x_2-1)\leq 1,\; x_1+x_2\geq 6,\; x_1,x_2\geq 0$
- 10. What assumptions can be made when \$P\ne0\$ and \$X^\prime CX\$ is positive semidefinite in a Quadratic Programming Problem?
- 11. Give an example of a Quadratic Programming Problem in which $P \neq 0$ and X'CX is positive semidefinite.
- 12. Show that $x_1^2+x_2^2-(3x_1+x_2)$ is separable.

(10×2=20)

Turn Over

Max. Marks : 80

Part B

Answer any **six** questions. Each question carries **5** marks.

- 13. Using Branch and Bound method solve $Max x_1 + 2x_2$ subject to $x_1 + x_2 \le 8, x_1 + 2x_2 \ge 4, x_1, x_2$ are non negative integers
- 14. Solve by Cutting Plane Method Maximize $x_1 + x_2$ subject to $2x_1 \le 3, 2x_1 + 2x_2 \ge 5, -2x_1 + 2x_2 \le 1, x_1, x_2$ non negative integers.
- 15. Solve by Branch and Bound Method Minimise $9x_1+10x_2$ subject to $0\leq x_1\leq 10, 0\leq x_2\leq 8, 3x_1+5x_2\geq 45$
- 16. Find the initial branches of the problem Minimize $3x_1 - x_2$ subject to $-10x_1 + 6x_2 \le 15, 14x_1 + 18x_2 \ge 63, x_1, x_2$ non negative integers.
- 17. Solve graphically $x_1^2+(x_2-3)^2, ext{ Subject to } x_1+x_2\leq 4, x_1-x_2\leq 2, x_1, x_2\geq 0$
- 18. Write K-T conditions for the following Mathematical Programming problem Max $x_1^2 - x_2^2$ subject to $x_1 - x_2 \le 3$, $(x_1 - 4)^2 + (x_2 - 7)^2 \le 9$, $x_1, x_2 \ge 0$
- 19. Solve by K-T conditions for the LP maximise $3x_1+2x_2$ subject to $2x_1-x_2\leq 4, x_1+x_2\leq 8, x_1, x_2\geq 0$
- 20. Solve $3x_1+6x_2-4x_1x_2-3x_1^2-2x_2^2$ subject to $3x_1+2x_2\leq 4, x_1+x_2\leq 1, x_1, x_2\geq 0$
- 21. Solve the following Separable Programming Problem $\operatorname{Max} 2x_1^2 + x_2^2$, Subject to $x_1 + x_2 \leq 4, x_1 2x_2 \leq 6, x_1, x_2 \geq 0$

(6×5=30)

Part C

Answer any **two** questions.

Each question carries 15 marks.

22. Solve by Cutting Plane Method Minimize $-2x_1 - 3x_2$ subject to $2x_1 + 2x_2 \le 7, 0 \le x_1 \le 2, 0 \le x_2 \le 2, x_1, x_2$ integers.

23. Solve the two following problems bt K-T conditions and verify geometrically a) Minimise x_1

- b) maximise x_2 in each case subject to $(x_1-4)^2+x_2^2\leq 16, (x_1-3)^2+(x_2-2)^2=13$
- 24. Solve by K-T conditions

$$\mathrm{Max}\ x_1 - x_2 - x_3 \ \mathrm{subject}\ \mathrm{to}\ 2x_1 - x_2 + x_3 \leq 6, x_1 + 2x_2 + x_2 \leq 4, x_1, x_2\ x_3 \geq 0$$

25. Solve Minimise
$$-x_1-x_2-x_3+rac{1}{2}(x_1^2+x_2^2+x_3^2)$$

subject to $x_1+x_2+x_3\leq 1, x_1+2x_2\leq rac{7}{3}, x_1, x_2, x_3\geq 0$

(2×15=30)

