QP CODE: 25020211

Reg No : Name :

B.Sc DEGREE (CBCS)) REGULAR/ IMPROVEMENT/ REAPPEARANCE / MERCY CHANCE EXAMINATIONS, FEBRUARY 2025

Fourth Semester

B.Sc Computer Science Model III

Core Course - CC4CRT03 - COMPUTER AIDED OPTIMIZATION TECHNIQUES

2017 Admission Onwards

B7EF8DE2

Time: 3 Hours

Max. Marks : 80

Part A

Answer any **ten** questions.

Each question carries **2** marks.

- 1. Explain the nature of OR.
- 2. What are the components of an LPP?
- 3. Write the standard form of LPP.
- 4. Explain the concept of duality.
- 5. What are the limitations of LPP?
- 6. How to reduce row and column in an assignment problem?
- 7. What do you mean by an unbalanced Assignment problem and how can we convert an unbalanced AP into a balanced AP?
- 8. How to convert a maximization transportation problem into minimization?
- 9. What is a sequencing problem?
- 10. Write the general form of an LPP.
- 11. What is earliest occurrence time and latest occurrence time of an event?
- 12. What is the critical path?

(10×2=20)

Part B

Answer any **six** questions.

Each question carries **5** marks.

Page 1/3

13. Solve the linear programming problem Maximize Z = 2x + 3y $x + y \le 30$,

 $x \le 20,$ $y \le 12$ $x, y \ge 0$

- 14. Explain the difference between slack and surplus variables.
- 15. Write the dual of the following. Minimize Z= 4x1 + 2x2 + x3Subject to, $x1 + x2 \le 10$ $3x1 + x2 + x3 \ge 23$ 7x1 - x2 = 6 $x1 x2, x3 \ge 0$
- 16. Explain Transportation problem.
- 17. Obtain an initial solution by the north west corner method

		А	В	С	D	SUPPLY
	1	14	25	45	50	100
	2	65	25	35	55	200
	3	35	30	65	15	50
DEMAND		160	100	130	60	

18. There are five jobs each of which must go through the two machines A and B in the order AB. Processing times are given below:

Job	1	2	3	4	5
Machine A	4	1	9	3	10
Machine B	2	6	7	8	3

Determine a sequence for 5 jobs that will minimize the total elapsed time. Also find the idle time of each machines.

19. Draw a network for the project whose activities and their precedence relationships are given below.

Activity	A	В	с	D	E	F
Predecessor	-	А	-	B,C	С	D,E

- 20. Define float and briefly explain different types of floats used in network.
- 21. What are the advantages of PERT and CPM?

Part C

Answer any **two** questions. Each question carries **15** marks.

22. Five jobs are required to be processed on three machines A, B and C in the order, ABC. Processing times are given below. Determine an optimal sequence and evaluate the total elapsed time. Also find the idle time of each machine.

Jop	1	2	3	4	5
M/C A	5	7	6	9	5
M/C B	2	1	4	5	3
M/C C	3	7	5	6	7

23. Solve the following LPP using simplex method.

Maximize Z= 3x1 + 5x2 + 4x3Subject to, $2x1 + 3x2 \le 8$ $2x1 + 5 x3 \le 10$ $3x1 + 2x2 + x3 \le 15$ $x1, x2, x3 \ge 0$

24. A timber company ships pine flooring to three building supply houses from its mills in bhunya,mondi and pigg's peak.

	HOUSE 1	HOUSE 2	HOUSE 3	CAPACITY(TONS)
BHUNYA	3	3	2	25
MONDI	4	2	3	40
PIGG'S PEAK	3	2	3	30
DEMAND(TONS)	30	30	35	95

25. Six jobs are required to be processed on three machines A, B and C in the order, ABC. Processing times are given below. Determine an optimal sequence and evaluate the total elapsed time. Also find the idle time of each machine.

Job	1	2	3	4	5	6
M/C A	3	12	5	2	9	11
М/СВ	8	6	4	6	3	1
м/сс	13	14	9	12	8	13

(2×15=30)

