Turn Over

Name :

B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE / MERCY CHANCE EXAMINATIONS, FEBRUARY 2025

Sixth Semester

CHOICE BASED CORE COURSE - MM6CBT03 - NUMERICAL ANALYSIS

Common for B.Sc Mathematics Model I & B.Sc Mathematics Model II Computer Science

2017 Admission Onwards

30FF4709

Time: 3 Hours

Max. Marks : 80

Part A

Answer any **ten** questions. Each question carries **2** marks.

- 1. Give the algorithm for bisection method.
- 2. Give the graphical representation of regula-falsi method.
- 3. What is generalized Newton's formula?
- 4. Explain Ramanujan's method to find a smallest root of the equation f(x) = 0.
- 5. What is polynomial interpolation?
- 6. What are higher order backward differences?
- 7. Derive the iterative formula for n^{th} shift operator.
- 8. What are the sufficient conditions for the existence of Fourier transform?
- 9. Show that for W_N defined in DFT, $W_{\frac{n}{2}} = W_N^2$.
- 10. Given the values of x and y as (0,2), (2,2), (4,-1), find $\frac{dy}{dx}$ at x=2.
- 11. A curve y = f(x) passes through the following points :

x	1.0	1.5	2.0	2.5	3.0	3.5	4.0
f(x)	2	2.4	2.7	2.8	3.0	2.6	2.1

Estimate the area bounded by the curve y=f(x), the xaxis and the lines $x=1\,$ and $x=4\,$ by suitable method

12. Evaluate the $\int_0^1 y dx$ by weddles rule for numerical integration

х	0	1/6	2/6	3/6	4/6	5/6	1
у	1	0.8571	0.75	0.6667	0.6	0.5454	0.5

(10×2=20)

Part B

Answer any **six** questions.

Each question carries **5** marks.

- 13. Explain Aitken's Δ^2 -process.
- 14. Prove that Newton-Raphson method has quadratic convergence.
- 15. Derive the formula for second, third and forth forward differences.
- 16. Write Newton's forward difference interpolation formula and backward difference interpolation formula.
- 17. The table below gives the values of tan x for $0.10 \le x \le 0.30$. Find tan 0.40.

x	0.10	0.15	0.20	0.25	0.30
у	0.1003	0.1511	0.2027	0.2553	0.3093

- 18. Using Matrix, find DFT of the sequence $f_k = \{1, 2, 3, 4\}$.
- 19. Derive the general formula for numerical integration for using Newtons forward difference formula.
- 20. Evaluate $I = \int_3^7 x^2 log x dx$ using Simpsons 1/3 rule with h = 1.
- 21. Write the general formula for Numerical Integration and derive Simpsons 3/8 -rule.

(6×5=30)

Part C

Answer any two questions.

Each question carries **15** marks.

22. (i) Use the iterative method to find a real root ,correct to three decimal places,of the equation 2x - 3 = cosx lying in the interval $\left[\frac{3}{2}, \frac{\pi}{2}\right]$.

(ii) Use iterative method find a real root of the equation $x^3 = 1 - x^2$ on the interval [0,1] with an accuracy of 10^{-4} .

23. Using the method of separation of symbols show that

a)
$$\Delta^n u_{x-n} = u_x - nu_{x-1} + rac{n(n-1)}{2}u_{x-2} + \ldots + (-1)^n u_{x-n}.$$

b) $e^x(u_0 + x\Delta u_0 + rac{x^2}{2!}\Delta^2 u_0 + \ldots) = u_0 + u_1x + u_2rac{x^2}{2!} + \ldots$

- ^{24.} Find the Fourier Series for the function defined by $f(x) = \begin{cases} x, & ext{if} 1 < x \leq \ 0. \\ x + 2, & ext{if} 0 < x \leq \ 1. \end{cases}$
- 25. From the following values of x and y obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1.6, correct to four decimal places and estimate the errors in the values of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at the same point.

x	1.0	1.2	1.4	1.6	1.8	2.0	2.2	
y	2.7183	3.3201	4.0552	4.9530	6.0493	7.3891	9.0250	

(2×15=30)