Turn Over



| Reg No | : |  |
|--------|---|--|
| Name   | : |  |

# B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE / MERCY CHANCE EXAMINATIONS, FEBRUARY 2025

### Sixth Semester

## CORE COURSE - MM6CRT04 - LINEAR ALGEBRA

Common for B.Sc Mathematics Model I & B.Sc Mathematics Model II Computer Science

2017 Admission Onwards

98A2D245

Time: 3 Hours

Max. Marks : 80

### Part A

Answer any **ten** questions. Each question carries **2** marks.

- 1. Prove that A' is an orthogonal matrix if A is an orthogonal nxn matrix.
- 2. a)Define linearly dependent rows. b)Prove that in the matrix  $A = \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$  the columns are linearly dependent.
- 3. Prove that  $X = \{ (x,0) : x \in R \}$  is a subspace of the vector space  $R^2$
- 4. Define span S of a vector space V and Prove that  $S = \{(1,0), (0,1)\}$  is a spanning set of  $R^2$
- 5. Prove that { (1,1,1), (1,2,3) , (2,-1, 1) } is a basis of  $\mathbb{R}^3$ .
- 6. If  $f: V \to W$  is linear, X is a subset of V and Y is a subset of W, define direct image of X under f and inverse image of Y under f.
- 7. If  $f:\mathbb{R}^2 o\mathbb{R}^2$  is given by f(a,b)=(b,0), prove that  $Im\,f=Ker\,f.$
- 8. If V and W are vector spaces of the same dimension n over F, then prove that V and W are isomorphic.
- 9. Define a nilpotent linear mapping f on a vector space V of dimension n over a field F. What is meant by index of nilpotency of f.
- 10. Define eigen value and eigen vector of a matrix.
- 11. Define eigen value of a linear map and the eigen vector associated with it.
- 12. Define diagonalizable linear map and diagonalizable matrix.





(10×2=20)

#### Part B

#### Answer any **six** questions.

#### Each question carries 5 marks.

13. a)Prove that every square matrix can be expressed uniquely as the sum of a symmetric matrix and a skew symmetric matrix.

b) If  $A = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$  Prove that  $A^{n} = \begin{bmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{bmatrix}$ 

- 14. Show that the system of equations x + 2y + 3z + 3t = 3, x + 2y + 3t = 1, x + z + t = 3, x + y + z + 2t = 1 has no solution.
- 15. Prove that Rn[x] be the set of polynomials of degree atmost n with real coefficients is a real vector space.
- 16. If S is a subset of V, then prove that S is a basis if and only if S is a minimal spanning set.
- 17. Show that the linear mapping  $f : \mathbb{R}^3 \to \mathbb{R}^3$  given by f(x, y, z) = (x + y + z, 2x y z, x + 2y z) is both surjective and injective.
- 18. Consider the linear mapping  $f : \mathbb{R}^3 \to \mathbb{R}^2$  given by f(x, y, z) = (2x y, 2y z). Determine the matrix of f (1) relative to the natural ordered bases. (2) relative to the ordered bases  $\{(1, 1, 1), (0, 1, 1), (0, 0, 1)\}$  and  $\{(0, 1), (1, 1)\}$ .
- 19. Define similar matrices. Prove that the relation of being similar is an equivalence relation on the set of  $n \times n$  matrices.

| 20. | Find the eigen values and eigen vec                                                                                                           | tors              | of $A$ | l = | $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ | $\begin{bmatrix} 2\\ 3 \end{bmatrix}$ |   |   |                |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|-----|----------------------------------------|---------------------------------------|---|---|----------------|
| 21. | <ul> <li>20. Find the eigen values and eigen vector</li> <li>21.</li> <li>For the nXn tridiagonal matrix An =</li> <li>An = n + 1.</li> </ul> | $\lceil 2 \rceil$ | 1      | 0   | 0                                      | • • •                                 | 0 | 0 | 1              |
|     |                                                                                                                                               | 1                 | 2      | 1   | 0                                      | • • •                                 | 0 | 0 |                |
|     |                                                                                                                                               | 0                 | 1      | 2   | 1                                      | • • •                                 | 0 | 0 | Prove that det |
|     |                                                                                                                                               | •                 | •      | •   | •                                      | • • • • •                             | • | • |                |
|     |                                                                                                                                               | 0                 | 0      | 0   | 0                                      | • • •                                 | 2 | 1 |                |
|     |                                                                                                                                               | 0                 | 0      | 0   | 0                                      |                                       | 1 | 2 |                |
|     | An = n + 1.                                                                                                                                   |                   |        |     |                                        |                                       |   |   |                |

(6×5=30)

#### Part C

Answer any **two** questions.

Each question carries **15** marks.

| 22. |                                                           | [1 | <b>2</b> | 0 | 3 | 1] |  |
|-----|-----------------------------------------------------------|----|----------|---|---|----|--|
|     | 22.<br>a) Reduce the following matrix to row echelon form | 1  | <b>2</b> | 3 | 3 | 3  |  |
|     |                                                           | 1  | 0        | 1 | 1 | 3  |  |
|     |                                                           | 1  | 1        | 1 | 2 | 1  |  |

b) Prove that by using elementary row operation, a non-zero matrix can be transformed to a row-echelon matrix.

c) Prove that every non-zero matrix A can be transformed to a Hermite matrix by using elementary row operations.

23. a)Define a left inverse and right inverse of a matrix.

b) Prove that the matrix A=  $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 3 & 3 \end{bmatrix}$  has a common unique left inverse and unique right inverse. c)Find the inverse of the matrix  $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{bmatrix}$ 

d)If  $A_1, A_2, \dots, A_P$  are invertible nxn matrices. Prove that the product  $A_1, A_2, \dots, A_P$  is invertible and that  $(A_1, A_2, \dots, A_P)^{-1} = A_P^{-1} \dots A_2^{-1} A_1^{-1}$ 

- 24. Let V and W be vector spaces each of dimension n over a field F. If  $f: V \to W$  is linear then prove that the following statements are equivalent: (i) f is injective (ii) f is surjective (iii) f is bijective (iv) f carries bases to bases, in the sense that if  $\{v_1, \ldots, v_n\}$  is a basis of V then  $\{f(v_1), \ldots, f(v_n)\}$  is a basis of W.
- 25. Consider the linear mapping  $f : \mathbb{R}^3 \to \mathbb{R}^3$  given by f(x, y, z) = (y, -x, z). Compute the matrix A of f relative to the natural ordered basis and the B matrix of f relative to the ordered basis  $\{(1, 1, 0), (0, 1, 1), (1, 0, 1)\}$ . Determine an invertible matrix X such that  $A = X^{-1}BX$ .

(2×15=30)