QP Code

Reg.No	:	••••••
Name	•	

MODEL QUESTION PAPER

MAHATMA GANDHI UNIVERSITY, KOTTAYAM **MGU-UGP (HONOURS) EXAMINATION** Semester II **MG2CCRBCA100** - Mathematics Foundation to Computer Science

(2024 ADMISSION ONWARDS)

Duration: 2 Hours

Maximum Marks: 70

[A] / [CO1]

Remember(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), Create(C), Skill(S), Interest(I) and Appreciation(Ap)

Students should attempt at least one question from each course outcome to enhance their overall outcome attainability.

Part A

Short answer type Questions Answer any 5 questions Each question carries 2 marks

- 1. Find the degree of all vertices in the given graph
- 2. What is a spanning tree? If a graph has 6 vertices and 10 edges, how many edges will its [K] / [CO1] spanning tree have? 3. Define Transcendental equations. Give one example. [K] / [CO2] 4. Apply Newton's method to find the first improved estimate of x = 3 for the function [A] / [CO2] $x^{2}-2x-1=0$
- 5. Write the standard form of a mathematical model of Linear Programming Problem. [U] / [CO3]

6.	5. How can we identify an infeasible solution while solving LPP using Graphical method?						[U] / [CO3]	
7.	7. Distinguish between balanced and unbalanced transportation problems.						[U] / [CO4]	
8.	8. What is the full form of 'MODI' in transportation problems, and what is the primary purpose of this method?						[U] / [CO4]	
	purpose of any memory.						[2x5 = 10]	
				Part B				
			Sho	ort Essay Type	Questions			
			A	Answer any 5 qu	uestions			
			Each	n question carri	es 6 marks			
9. Let G be a graph without isolated vertices and it has an Euler cycle, then prove that G is connected							[U] / [CO1]	
10. If a graph has an Euler path, then prove that there exist exactly 2 vertices of odd degree.						[U] / [CO1]		
11. Explain a forward difference table by using an example.						[U] / [CO2]		
12	12. Use Newton's Backward formula to find the value of $f(x)$ at $x = 9$ given the table: [A]/[CO2]							
	X	2	5	8	11			
	f(x)	94.8	87.9	81.3	75.1			
13. Solve using simplex method Maximize $z = 3x_1 + 2x_2$ Subject to $x_1 + x_2 \le 4$ $x_1 - x_2 \le 2$ $x_1 \ge 0, x_2 \ge 0$ [A] / [CO3]							[A] / [CO3]	
14. Describe Big M method for solving a linear programming problem.					[U] / [CO3]			
15. Obtain initial feasible solution by Vogels method.					[A] / [CO4]			

15. Obtain initial feasible solution by Vogels method.

	A	B	C	Available
X	11	21	16	14
Y	7	17	13	26
Z	12	23	21	31
Required	18	28	25	

_							
	Factories/Warehouses	W1	W2	W3	<i>W</i> 4	Supply	
	F1	7	3	5	5	34	
	F2	5	5	7	6	15	
	F3	8	6	6	5	12	
	F4	6	1	6	4	19	
	Demand	21	25	17	17		

16. Obtain initial basic feasible solution to the following transportation problem by Least Cost Method [A] / [CO4]

Part C

Essay Type Questions Answer any 2 questions Each question carries 15 marks

17. (a) Define a tree. Is every graph a tree?

[A] / [CO1] (b) Does there exist a tree with 8 vertices, where each vertex has a degree of 1? Justify vour answer.

(c) If a graph G has one more vertex than edge, then G is a tree. Prove or disprove.

18. Find using Composite Simpson's 1/3 rule for n=6:
$$\int_{-3}^{3} x^4 dx$$
 [A] / [CO2]

- 19. A toy manufacturing company produces 2 models of plastic dolls. Model A, superior in [A] / [CO3] quality, contributes Rs. 20 per piece, while the other model B contributes Rs.15 per piece. Each piece of model A requires twice as much time to manufacture as each piece of model B does. If the company were to produce model A only, it can as many as 1000 pieces of it per day; but if it were to produce both, it cannot produce more than 800 pieces of the two per day due to limited supply of plastic material. Model A requires silk material also, the quantity of which is sufficient only for 400 pieces of it per day. Model B requires cotton material but the same is available only for 700 pieces of it per day. Formulate the LPP model and solve it graphically.
- [A] / [CO4] ^{20.} Find the optimal solution of the following transportation problem by the North-West Corner Rule.

	D1	D2	D3	<i>D</i> 4	Supply
<i>O</i> 1	6	4	1	5	14
<i>O</i> 2	8	9	2	7	16
<i>O</i> 3	4	3	6	2	5
Demand	6	10	15	4	35

[15x2 = 30]

[6x5 = 30]