Ш				I
	000			

Keg.	No	•••••
Nom	•	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, SEPTEMBER 2024

First Semester

VECTOR ANALYSIS, DIFFERENTIAL EQUATIONS, FOURIER SERIES AND INTEGRAL TRANSFORMS

(Complementary Mathematics for B.Sc. Electronics/Computer Science)

[2013—2016 Admissions]

Time: Three Hours Maximum Marks: 80

Part A

Answer all questions.

Each question carries 1 mark.

- 1. Give an example of a vector field.
- 2. Define the Laplace operator.
- 3. Define Curl of a vector field.
- 4. Test whether the equation $(x^2 ay) dx = (ax y^2) dy$ exact.
- 5. Write the form of the wave equation.
- 6. Write the formulas for the Fourier co-efficients for a periodic function f with period 2π .
- 7. Define even and odd functions with examples.
- 8. Write the Laplace transform of the function f(t) = 1, when $t \ge 0$.
- 9. Write the inverse Laplace transform of $\frac{5}{s+3}$.
- 10. State the shifting property of inverse Laplace Transform.

 $(10 \times 1 = 10)$

Turn over

E 6547

Part B

Answer any **eight** questions.

Each question carries 2 marks.

- 11. Find ∇f , where $f = \frac{x}{y}$.
- 12. Find the curl of v = yzi + 3zxj + zk.
- 13. State Green's theorem in the plane.
- 14. Find the rectangular co-ordinates of the point with spherical co-ordinates $(\rho, \theta, \phi) = (4, \pi/3, \pi/4)$.
- 15. Solve the equation $(e^y + 1) \cos x dx + e^y \sin x dy = 0$.
- 16. Solve the equation $\sin x \frac{dy}{dx} y \cos x + y^2 = 0$.
- 17. Solve the equation $\frac{d^2y}{dx^2} = \frac{3dy}{dx} + 2y = 0.$
- 18. Sketch the function $f(x) = x, -\pi < x < \pi$.
- 19. Write the Euler formulas for calculating the Fourier co-efficients of a period function with period 2L.
- 20. Write the Laplace transform of $\cos^2 t$.
- 21. Find the inverse transform of $\frac{12}{s^2+16}$.
- 22. Find the Laplace transform of $2te^t$.

 $(8 \times 2 = 16)$

Part C

Answer any **six** questions.

Each question carries 4 marks.

23. Find the directional derivative of $f = x^2 + y^2 + z^2$ at P: (2, -2, 1) the direction of a = [-1, -1, 0].

24. Calculate $\int_{C} \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = \left[y^3, x^3 \right]$, C the parabola $\mathbf{Y} = 5x^2$ from $\mathbf{A} \left(0, 0 \right)$ to B (2, 20).

25. Describe the region of integration and evaluate $\int_{0}^{1} \int_{x}^{2x} (x+y)^{2} dy dx.$

26. Solve the equation $(1-x^2)\frac{dy}{dx} - xy = x^2y^2$.

27. By finding the integrating factors solve the equation (1 + xy) ydx + (1 - xy) xdy = 0.

28. Find the Fourier Series of the following periodic function with period 2π .

$$f(x) = \begin{cases} 1 \text{ if } & -\pi/2 < x < \pi/2 \\ 0 \text{ if } & \pi/2 < x < 3\pi/2. \end{cases}$$

29. Find F(t) if $L(F(t)) = \log_e \frac{s^2 + 1}{(s-1)^2}$.

30. Using Partial fractions find F (t) if L $\{F(t)\}=\frac{s+12}{s^2+4s}$.

31. Find the Laplace transform of $t^2 \sinh 2t$.

 $(6 \times 4 = 24)$

Turn over

E 6547

Part D

Answer any **two** questions.

Each question carries 15 marks.

32. Verify stoke's theorem by evaluating the line integral and double integral for

 $\mathbf{F}\left(x,\,y,\,x\right)=x^{2}i+y^{2}j+z^{2}k,\ \, \text{σ is the portion of the cone }z=\sqrt{x^{2}+y^{2}}\ \, \text{below the plane }z=1.$

33. (a) Solve
$$\frac{d^2y}{dx^2} + 2y = x^2 e^{3x} + e^x \cos 2x$$
.

(b) Solve the system of equation:

$$\frac{dx}{dt} + 2y = -\sin t, \frac{dy}{dt} = 2x + \cos t.$$

34. (a) Solve the equation

$$yz p + zxq = xy$$
.

- (b) Obtain the complete solution of pq + p + q = 0.
- 35. Find the Fourier series for |x| in $[-\pi, \pi]$ and deduce that $1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \pi^2/8$.

 $(2 \times 15 = 30)$

