

Reg.	No

Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MAY 2024

Fourth Semester

Core Course—OPTO ELECTRONICS

(For the Programme B.Sc. Electronics)

[2013—2016 Admissions]

Time: Three Hours Maximum Marks: 80

Part A

Answer all questions. Each question carries 1 mark.

Choose the most appropriate answer:

(a) P/N diode.

1.	A source	of light	for	optical	${\rm fibre}$	is	:
----	----------	----------	-----	---------	---------------	----	---

(b) Photodiode.

(c) Photo transistor.

(d) LED.

- 2. Response time of the photodetector in a fibre optic system set-up limits which parameter of the optical fibre:
 - (a) Bandwidth.

(b) Numerical aperture.

(c) Attenuation.

- (d) Pulse spread.
- 3. In comparison to LEDs, laser has:

(a) Narrow spectral width.

(b) Provision for confinement.

(c) No tuning arrangement.

- (d) High emission efficiency.
- 4. In a photodetection process which of the following phenomenon occurs?
 - (a) Generation of carriers.
 - (b) Generation of photocurrent.
 - (c) Transportation of carriers across transition region.
 - (d) All of above.
- 5. Laser light is produced by:

(a) Electricity.

(b) Spontaneous emission.

(c) Stimulated emission.

(d) All the above.

Turn over

E 6464

- 6. Interference patterns maty be divided into two main classes, those based on:
 - (a) Wavefront and wavelength.
- (b) Wavefront and amplitude.
- (c) Wavefront and phase.
- (d) Wavefront and frequency.
- 7. Laser diodes present more problems to the circuit designer than LED because of:
 - (a) The threshold current's age dependence.
 - (b) The threshold current temperature dependence.
 - (c) The emission wavelength's temperature dependence.
 - (d) All of the above.
- 8. Out of multimode step index fibres and multimode graded index fibres which one will support more number of modes for a given set of fibre parameters?
 - (a) Multimode step index fibre.
 - (b) Multimode graded index fibre.
 - (c) Both will support equal number of modes.
 - (d) None of the above.
- 9. Population inversion can be achieved in a material by an action called:
 - (a) Stimulated emission.
- (b) Spontaneous emission.
- (c) Spherical abberation.
- (d) None of the above.
- 10. Which of the following requirements a photodetector should possess for its good performance?
 - (a) Wide bandwidth.
- (b) Low dark current.
- (c) High conversion efficiency.
- (d) All of above.

 $(10 \times 1 = 10)$

Part B

Answer any **eight** questions. Each question carries 2 marks.

- 11. Explain how elliptical polarisation is produced.
- 12. Explain Acousto-optic effect.
- 13. What is spatial coherence of laser?
- 14. What are the common methods to produce polarised light?
- 15. Differentiate step index and graded index fibres.
- 16. Draw the refractive index profile of an optic fibre.

E 6464

- 17. With ray diagrams, describe single mode step index optical fibre.
- 18. What are the requisites for laser action?
- 19. Explain quantum well structure working.
- 20. What are the different types of distortion in optical fibre?
- 21. Explain the principle of CL displays.
- 22. Explain the operation of LED analog modulation. What is intermodulation distortion?

 $(8 \times 2 = 16)$

Part C

Answer any **six** questions. Each question carries 4 marks.

- 23. Explain the principle and applications of Kerr modulator.
- 24. Compute the responsivity of an InGaAs APD operating at 1.55 μm and having a quantum efficiency of 0.7 if its gain is 10. How much optical power is needed by this detector to produce 20 nA?
- 25. Explain the LED emission pattern for surface emitting LED and edge emitting LED.
- 26. With suitable diagrams, explain the principle of operation of injection LASER.
- 27. A silicon APD has a quantum efficiency of 65 % at a wavelength of 900 nm. If incident optical power of 0.5 μ W produces a multiplied photocurrent of 20 μ A, find the value of the multiplication factor.
- 28. A double heterostructure surface emitter LED emitting at a peak wavelength of 1310 nm has value of internal quantum efficiency as 70 % and drive current as 50 mA. Calculate the value of the optical power generated internally to the LED.
- 29. A multimode step index fibre having core refractive index of 1.5 and a relative refractive index difference of 1 %. If the number of modes propagating at a wavelength of 1.3 μ m is 1100, estimate the diameter of the fibre core.
- 30. Describe the mechanism of intermodal dispersion in a multimode step index fibre
- 31. For a LED, compute the fraction of injected charges which produce photons if 2 mW of optical power are radiated with a drive current of 50 mA at $1.3 \mu m$.

 $(6 \times 4 = 24)$

Turn over

Part D

Answer any **two** questions. Each question carries 15 marks.

- 32. Describe, with the aid of suitable diagrams, the major strategies and structures utilised in the fabrication of single frequency injection lasers.
- 33. Explain with necessary diagrams the working of Plasma panel display.
- 34. Describe the structure and principle of an optical fibre. Derive the expression for critical angle from Snell's law and differentiate between single mode and multimode optical fibres.
- 35. Explain the constructional details and properties of materials used in solar cell. Explain the I-V characteristics and spectral response.

 $(2 \times 15 = 30)$

