Ð	6420	

Reg. No
Nama

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MAY 2024

Fourth Semester

 ${\bf Complementary~Course-OPERATIONS~RESEARCH-NON-LINEAR~PROGRAMMING}$

(For B.Sc. Mathematics—Model II)

[2013–2016 Admissions]

Time: Three Hours

Maximum Marks: 80

Part A

Answer all questions. Each question carries 1 mark.

- 1. Define Integer Programming.
- 2. What is the difference between Integer programming and Linear programming?
- 3. Can integer programming problems be solved by rounding off the corresponding simplex solution.
- 4. What do you mean by 0-1 programming?
- 5. What is a non-linear programming problem?
- 6. Define a concave function.
- 7. Write the matrix form of a non-linear programming problem.
- 8. Define saddle value problem.
- 9. Define a positive definite quadratic form.
- 10. Define quadratic programming problem.

 $(10 \times 1 = 10)$

Part B

Answer any **eight** questions. Each question carries 2 marks.

- 11. Write a short note on Gomory's cutting plane algorithm.
- 12. What are the applications of integer programming models?
- 13. What are the constraints of the sub-problems of an integer linear programming problem with respect to branch and bound method?
- 14. How does quadratic programming problem differ from the linear programming problem?

Turn over

E 6420

- 15. What are the applications of non-linear programming?
- 16. What is the relation between a saddle point of F(X, Y) and a minimal point of F(X) with respect to a convex programming problem?
- 17. Show that if X^TQX is positive definite them it is strictly convex for all $X \in \mathbb{R}^n$, where Q is an $n \times n$ real symmetric matrix.
- 18. Define a separable function.
- 19. State the sufficient conditions for non-negative saddle points.
- 20. Check whether the function $f(x_1, x_2, x_3) = x_1^3 2x_1^2 + 4x_1 + 3x_2^4 4x_2 + 5\sin(x_3 + 1)$ separable.
- 21. Explain Kuhn Tucker conditions.
- 22. Define separable programming problem.

 $(8 \times 2 = 16)$

Part C

Answer any **six** questions. Each question carries 4 marks.

23. Find the optimum integer solution to the following all integer programming problem:

Maximize
$$Z = x_1 + x_2$$

subject to the constraints

$$3x_1 + 2x_2 \le 5$$
$$x_2 \le 3$$

 $x_1, x_2 \ge 0$ and are integers.

24. Suppose five items are to be loaded on the vessel. The weight W, volume V and price P are tabulated below. The maximum cargo weight and cargo volume are W = 112, V = 109 respectively. Determine the most valuable cargo load in discrete unit of each item:

Item		W	V	Price (in Rs.)
1		5	1	4
2		8	8	7
3	• • •	3	6	6
4		2	5	5
5		7	4	4

Formulate the problem as an integer programing model.

E 6420

25. Find the optimum integer solution to the following all integer programming problem:

$$\begin{array}{lll} \text{Maximize Z} = x_1 + 2x_2 \\ \text{subject to} & x_1 + x_2 \leq 7 \\ & 2x_1 & \leq 11 \\ & 2x_2 \leq 7 \end{array}$$

 $x_1, x_2 \ge 0$ and are integers.

26. Obtain the set of necessary conditions for the non-linear programming problem:

Maximize
$$Z = x_1^2 + 3x_2^2 + 5x_3^2$$

subject to the constraints

$$x_1 + x_2 + 3x_3 = 2$$

 $5x_1 + 2x_2 + x_3 = 5$
 $x_1, x_2, x_3 \ge 0$

- 27. Examine $Z = 6x_1x_2 10x_3$ for maxima and minima under the constraint equation $3x_1 + x_2 + 3x_3 = 10$.
- 28. Explain the role of Lagrange multipliers in a non-linear programming problem.
- 29. Show that K-T conditions fail to give maximum x_1 , subject to

$$(1-x_1)^3-x_2\geq 0, \ x_1\geq 0, \ x_2\geq 0.$$

30. Solve graphically the non-linear programming problem:

Maximize
$$Z = x_1$$

subject to the constraints:

$$(3-x_1)^3 - (x_2-2) \ge 0$$
$$(3-x_1)^3 + (x_2-2) \ge 0$$
$$x_1, x_2 \ge 0.$$

31. Explain Wolfes's method of solving a quadratic programming problem.

 $(6 \times 4 = 24)$

E 6420

Part D

Answer any **two** questions. Each question carries 15 marks.

32. Use Branch and Bound technique to solve the following integer programming problem:

Maximize
$$Z = 3x_1 + 3x_2 + 13x_3$$

subject to the constraints

 $0 \le x_j \le 5$, all x_j are integers for j = 1, 2, 3.

33. Use Wolfe's method to solve the quadratic programming problem:

Maximize
$$Z = 2x_1 + 3x_2 - 2x_1^2$$

subject to the constraints

$$\begin{array}{cccc} x_1 & + & 4x_2 & \leq & 4 \\ x_1 & + & x_2 & \leq & 2 \\ & x_1, x_2 \geq 0. \end{array}$$

34. Use separable convex programming to solve the problem :—

Maximize
$$Z = 3x_1^2 + 2x_2^2$$

subject to

$$x_1^2 + x_1^2 \le 25$$

$$9x_1 - x_2^2 \le 27, \ x_1, x_2 \ge 0.$$

35. Use K.T conditions to solve the problem:

Maximize
$$Z = 2x_1^2 + 12x_1x_2 - 7x_2^2$$

subject to the constraints

$$\begin{array}{cccc} 2x_1 & + & 5x_2 & \leq & 98 \\ & x_1, \, x_2 \geq 0. \end{array}$$

 $(2 \times 15 = 30)$

