Reg. No

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MAY 2024

Fourth Semester

Complementary Course—Physics

PHYSICAL OPTICS, LASER PHYSICS AND ASTROPHYSICS

(Common for B.Sc. Mathematics (Model I) and B.Sc. Statistics)

[2013 to 2016 Admissions]

Time: Three Hours Maximum: 60 Marks

Part A

Answer all questions.

Each question carries 1 mark.

- 1. Why are interference fringes formed by Newton's rings are circular?
- 2. What are the conditions for producing observable interference pattern?
- 3. What is the optical path difference between the waves emerging from the slits in the Young's double experiment?
- 4. What is double refraction?
- 5. State the law of Malus.
- 6. What are the applications of polaroids?
- 7. What are Einstein coefficients?
- 8. What are the application of laser beams?

 $(8 \times 1 = 8)$

Part B

Answer any **six** questions.

Each question carries 2 marks.

- 9. Explain why different colours are produced by a thin film in white light.
- 10. Differentiate between diffraction and interference.
- 11. What is dispersive power? Explain.
- 12. What are quarter wave plates? What are its uses?

Turn over

E 6392

- 13. How would you obtain plane polarised light by reflection?
- 14. Explain the principle of ruby laser.
- 15. Give a brief note on Neutron star.
- 16. Explain population inversion.
- 17. Discuss about polarization by scattering.
- 18. Write a short note on the properties of laser beams.

 $(6 \times 2 = 12)$

Part C

Answer any **four** questions. Each question carries 4 marks.

- 19. Two straight and narrow parallel slits 1 mm apart are illuminated by monochromatic light. Fringes formed on the screen held at a distance of 100 cm from the slits are 0.50 mm apart. What is the wavelength of light?
- 20. In Young's double slit experiment, the angular width of a fringe formed on a screen is 0.1°. The wavelength of light used is 6000 Å. What is the spacing between the slits?
- 21. Newton's rings are formed with red light of wavelength 670nm. The radius of the 20th ring is found to be 1.1×10^{-2} m. Find the radius of curvature of the 30th ring.
- 22. In Fraunhofer diffraction due to a narrow slit a screen is placed 2 m away from the lens to obtain the pattern. If the slit width is 0.2 mm and the first minima lie 5 mm on either side of the central maxima, find the wavelength of light.
- 23. In a plane diffraction grating, the angle of diffraction for the second order maxima for wavelength 5×10^{-5} cm is 30°. Calculate the number of lines per cm of the grating surface.
- 24. The He-Ne systems capable of lasing at 3.391 micrometre. Determine the energy difference in electron volt between the upper and lower levels of the wavelength.

 $(4 \times 4 = 16)$

Part D

Answer any **two** questions.

Each question carries 12 marks.

- 25. Discuss the theory of Newton's rings and determination of wavelength.
- 26. Distinguish between plane polarized, circularly polarized and elliptically polarized light.
- 27. Explain the principles, construction and working of a YAG laser.
- 28. Write an essay on stellar evolution.

 $(2 \times 12 = 24)$

