

E 6391

Reg. No	
Name	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MAY 2024

Fourth Semester

Complementary Course—STATISTICAL INFERENCE

(Common for B.Sc. Mathematics Model I, Physics Model I and Computer Applications) [2013–2016 Admissions]

Time: Three Hours Maximum Marks: 80

Part A (Short Answer Questions)

Answer all questions.
Each question carries 1 mark.

- 1. Define a consistent estimator.
- 2. What is a point estimate?
- 3. Define a likelihood function.
- 4. Obtain the method moment estimator of λ of a PD.
- 5. Write the expression for the 95 % confidence interval for the variance of a normal distribution.
- 6. What do you mean by testing of hypothesis?
- 7. What is a *p*-value?
- 8. Define power of test.
- 9. Define a random sample.
- 10. Who developed ANOVA?

 $(10\times 1=10)$

Part B (Brief Answer Questions)

Answer any **eight** questions. Each question carries 2 marks.

- 11. In $N(\mu, \sigma)$, show that sample mean is an unbiased estimator of population mean.
- 12. Give an example of an estimator which is unbiased but not consistent.
- 13. Define a sufficient estimator.
- 14. What is an MLE?

Turn over

E 6391

- 15. Write a note on method of minimum variance.
- 16. Write the expression for 100 (1α) % confidence interval of p, the population proportion of success.
- 17. Define (i) Null hypothesis; (ii) Alternate hypothesis.
- 18. What is mean by critical region?
- 19. How will you distinguish a large sample test from a small sample test?
- 20. What are the applications of Chi square test?
- 21. What is meant by testing the mean of a population?
- 22. What are the assumptions of 't' test?

 $(8 \times 2 = 16)$

Part C (Descriptive/Short Essay Type Questions)

Answer any **six** questions. Each question carries 4 marks.

23. Given three random observations x_1, x_2 and x_3 from $N(\mu, 1)$ population, a person constructs the following estimator of μ if in a sample of 25 observations there are 10 ones and 4 two's:

$$T_1 = \frac{2x_1 + 3x_2 + x_3}{6}, T_2 = \frac{x_1 + 2x_2 + 3x_3}{7}, T_3 = \frac{x_1 + x_2}{2}.$$

Find the most efficient estimator of. Which one would you choose and why?

24. Show that $\frac{T(T-1)}{n(n-1)}$ is an unbiased estimator for θ^2 , for the sample x_1, x_2, \dots, x_n drawn on

X which takes values 1 or 0 with respective probabilities θ and $1-\theta$ where $T = \sum_{i=1}^{n} X_i$.

25. Given the probability distribution:

- 26. Explain the concept of interval estimation. How does this differ from point estimation?
- 27. In a sample of 500 families owning television sets it was found that 160 owned colour sets. Find a 95 % confidence interval for the actual proportion of families with colour sets.
- 28. If $X \ge 1$ is the critical region for testing $H_0: \theta = 2$ against $H_1: \theta = 1$ on the basis of single observation from $f(x, \theta) = \theta e^{-\theta x}, x \ge 0$. Obtain the values of Type I and Type II errors.

E 6391

- 29. Explain Neymann Pearson approach of testing Hypothesis.
- 30. In a sample of 600 men, 450 are smokers and in a sample of 900 women 450 are smokers. Do the data indicate that men and women are significantly different with regard to smoking.
- 31. Explain the Chi-squre test of goodness of fit.

 $(6 \times 4 = 24)$

Part D (Long Essays)

Answer any **two** questions. Each question carries 15 marks.

- 32. Obtain MLE of θ in the pdf $f(x,\theta) = (1+\theta)x^{\theta}, 0 < x < 1$ based on a sample of n independent observations. Examine whether this estimate is sufficient for θ .
- 33. In a rat feeding experiment the following results were obtained:

High Protein x: 13 14 10 11 12 16 10 8 11 12 9 2

Low Protein y: 7 11 10 8 10 13 9

Test the equality of variance of the gain in weight due to the two diets.

34. Calculate the value of the Chi square and the degrees of freedom in a simple contingency table with observed cell frequencies:

35. Perform a one-way ANOVA for the following data:—

$\widehat{\text{Sample}}$			
$\overline{\mathbf{A}}$	В	$\overline{\mathbf{C}}$	
5	8	7	
6	10	3	
8	11	5	
9	12	4	
7	4	1	

 $(2 \times 15 = 30)$

