

Reg. No	•••••••
Nama	

B.A. DEGREE (C.B.C.S.S.) EXAMINATION, MAY 2024

Fourth Semester

Complementary Course—CALCULUS - EXPONENTIAL AND LOGARITHMIC FUNCTIONS

(For B.A. Economics)

[2013–2016 Admissions]

Time: Three Hours

Maximum Marks: 80

Part A

Answer all questions. Each question carries 1 mark.

- 1. What is $\lim_{x\to 5} 9$?
- 2. Find f'(x) if $f(x) = 3x^{-2}$.
- 3. What do you mean by the term inflection point?
- 4. State natural logarithmic function rule.
- 5. If $y = e^{2x+1}$, what is y'(x).
- 6. If $y = a^{5x^2}$, find $\frac{dy}{dx}$.
- 7. What is $\int \frac{1}{3x} dx$?
- 8. Find $\int_{1}^{3} (4x^3 + 6x) dx$.
- 9. If $z = 9x^2y + 6xy^3$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
- 10. Write the degree of the homogeneous function $z = x^3 + 2xy^2 + y^3$.

 $(10 \times 1 = 10)$

Turn over

E 6370

Part B

Answer any **eight** questions. Each question carries 2 marks.

11. Find
$$\lim_{x \to 6} \frac{4x^2 - 2x - 8}{5x^2 + 12}$$
.

12. Find the derivative of
$$y = \frac{(x+1)^2}{x^2 - 2x + 2}$$
.

- 13. Test whether the function $y = x^3 7x^2 + 6x 2$ is increasing, decreasing or remains stationary at x = 4.
- 14. How long will it take money to double at 5 % interest when compounded quarterly?

15. If
$$f(x) = \log_a (2x^2 + 1)$$
. Find $f'(x)$.

16. Evaluate
$$\int 16e^{-4x} dx$$
.

17. Evaluate
$$\int (x-9)^{7/4} dx$$
.

18. Show that
$$\int_{5}^{-5} (2x+3)dx = 0$$
.

19. Evaluate
$$\int_{1}^{4} (x^{-1/2} + 3x^{1/2}) dx$$
.

20. Find
$$Z_x$$
 and Z_y for $Z = (x + y)^2$.

21. If
$$Z = x^2 + xy + y^2$$
 find Z_{xy} and Z_{xx} .

22. If
$$Z = x^{0.4}y^{0.6}$$
 find Z_{xx} and Z_{yy} .

 $(8 \times 2 = 16)$

Part C

Answer any **six** questions. Each question carries 4 marks.

23. Test whether
$$f(x) = \frac{x^2 + 3x + 12}{x - 3}$$
 continuous at $x = 4$.

24. Find the derivative of
$$y = \frac{(8x-5)^2}{7x+4}$$
.

E 6370

- 25. Find the relative extrema for the function $f(x) = -7x^2 + 126x 25$ by (a) finding critical values and (b) determining if at the critical values the function is at a relative maximum or minimum.
- 26. Given a principal P of \$1000 at 6 % interest for 3 years, find the future value 3 when the principal is compounded (a) annually; (b) quarterly.
- 27. Given that $y = \ln(x^2 6x + 10)$. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.
- 28. Find $\int x^4 (2x^5 5)^4 dx$.
- 29. Use substitution method to integrate $\int_{0}^{3} 8x(2x^{2}+3)dx$.
- 30. Given $Z = (x^3 + 7y^2)^4$. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
- 31. Find the critical values for minimizing the cost of a firm producing two goods x and y when the total cost function is $c = 8x^2 xy + 12y^2$ and the firm is bound by contract to produce a minimum combination of goods totalling 42, that is subject to the constraint x + y = 42.

 $(6 \times 4 = 24)$

Part D

Answer any **two** questions. Each question carries 15 marks.

- 32. (a) For the function $y = -(x 8)^4$ (i) find the critical values (ii). Test whether the function has a relative maximum, relative minimum or inflection at critical points.
 - (b) Optimize $y = 7x^2 + 112x 54$ at critical values and test for relative maximum or minimum at critical points.
- 33. (a) An animal population goes from 3.5 million in 1997 to 4.97 million in 2001. Express the population growth *p* in terms of a natural exponential function and determine the rate of growth.
 - (b) Find the slope of $y = \ln^2(x+4)$ at x = 6.

Turn over

- 34. (a) Evaluate $\int \frac{3x^2 + 2}{4x^3 + 8x} dx$.
 - (b) Draw the graph of the following functions and evaluate the area between $y_1 = 7 x$ and $y_2 = 4x x^2$ from x = 1 to x = 4.
- 35. (a) Optimize $f(x,y) = 26x 3x^2 + 5xy 6y^2 + 12y$ subject to 3x + y = 170.
 - (b) What combination of goods x and y should a firm produce to minimize cost when the join cost function is $c = 6x^2 + 10y^2 xy + 30$ and the firm has a production quota of x + y = 34.

 $(2 \times 15 = 30)$

