

Reg. No	•••••
Name	

B.A. DEGREE (C.B.C.S.S.) EXAMINATION, NOVEMBER 2022

Fourth Semester

Complementary Course—CALCULUS, EXPONENTIAL AND LOGARITHMIC FUNCTIONS

(For B.A. Economics)

(2013-2016 Admissions)

Time: Three Hours

Maximum Marks: 80

Part A

Answer all questions.
Each question carries 1 mark.

1. What is
$$\lim_{x \to z} (x^4 + 3x)$$
?

2. If
$$y = -6x^5$$
, find $\frac{dy}{dx}$.

3. Define the term critical point.

4. If
$$f(x) = e^{g(x)}$$
, what is $f'(x)$?

5. Find the derivative of $2xe^x$.

6. If
$$y = (\log x)^2$$
, find $\frac{dy}{dx}$.

7. What is
$$\int a^{kx} dx$$
?

8. Find
$$\int \frac{1}{x} dx$$
.

9. Find
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$ for $z = e^x \sin y$.

10. Define income and cross price elasticities of demand.

 $(10 \times 1 = 10)$

Turn over

E 3669

Part B

Answer any **eight** questions. Each question carries 2 marks.

11. Find
$$\lim_{x \to 3} (5x^2 - 4x + 9)$$
.

- 12. Find the derivative of $y = (x+1)^2 (2x+3)$.
- 13. Test whether $y = 3x^2 14x + 5$ increasing, decreasing or remains stationary at x = 4.
- 14. At what rate will money quintuple if compounded continuously for 25 years?
- 15. Find the first and second derivative of $y = \log_a 3x$.
- 16. Evaluate $\int x^{-1/5} dx$.
- 17. Find $\int (6e^{3x} 8e^{-2x}) dx$.
- 18. State fundamental theorem of integral calculus.

19. Find
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$ for $z = 5x^3 - 3x^2y^2 + 7y^5$.

20. Find
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$ when $z = (x^3 + 7y^2)^4$.

21. If
$$z = (12x - 7y)^2$$
 find z_{xy} and z_{yx} .

22. If
$$z = x^{0.7}y^{0.2}$$
 find z_{xx} and z_{yy} .

 $(8 \times 2 = 16)$

E 3669

Part C

Answer any **six** questions. Each question carries 4 marks.

- 23. Use implicit differentiation to find $\frac{dy}{dx}$ from the equation $3x^4 7y^5 86 = 0$.
- 24. Test whether $f(x) = \frac{x-3}{x^2-9}$ continuous at x = 3.
- 25. Find the critical values and relative extrema if any of the function $f(x) = 2x^4 16x^3 + 32x^2 + 5$.
- 26. Find the effective annual interest rate on \$100 at 6 percent compounded:
 - (a) Semiannually; and (b) Continuously.

27. Find
$$\frac{dy}{dx}$$
, where $y = \ln \frac{x^3}{(2x+5)^2}$?

- 28. Find the integral for $y = \int \left(x^{\frac{1}{2}} + 3x^{-\frac{1}{2}}\right) dx$, given the initial conditions y = 0, when x = 0.
- 29. Integrate $\int_{0}^{3} \frac{6x}{x^2 + 1} dx.$
- 30. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$, where $z = \frac{6x + 7y}{5x + 3y}$?
- 31. A firm producing two goods x and y has the profit function:

$$\pi = 64x - 2x^2 + 4xy - 4y^2 + 32y - 14.$$

Find the profit maximising level of output for each of the two goods and test that the profits are maximised.

$$(6 \times 4 = 24)$$

Turn over

E 3669

Part D

Answer any **two** questions. Each question carries 15 marks.

32. (a) Given $f(x) = g(x) \cdot h(x)$, where g'(x) and h'(x) both exist. Prove that :

 $f'(x) = g(x) \cdot h'(x) + h(x) \cdot g'(x).$

- (b) Maximise the profit π for a firm given total revenue $R=4000Q-33Q^2$ and total cost $C=2Q^3-3Q^2+400Q+5000$, assuming Q>0.
- 33. (a) Find the future value of a principal of \$ 2000 compounded semi annually at 12 percent for 3 years using (i) an exponential function; (ii) the equivalent natural exponential function.
 - (b) Using logarithmic differentiation find the derivative of $g(x) = \frac{\left(5x^3 8\right)\left(3x^4 + 7\right)}{\left(9x^5 2\right)}$.
- 34. (a) Evaluate $\int \frac{6x^2 + 4x + 10}{(x^3 + x^2 + 5x)^3} dx$.
 - (b) Find the area between the curves $y_1 = x^2 4x + 8$ and $y_2 = 2x$ from x = 0 to x = 3.
- 35. Optimize $z = 4x^2 + 3xy + 6y^2$ subject to the constraint x + y = 6 using the method of Lagrange multipliers.

 $(2 \times 15 = 30)$

