\mathbf{E}	29	41

(Pages: 2)

Reg. No	***********
Nama	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, APRIL 2022

Fifth Semester

Core Course—DIGITAL ELECTRONICS

(Common for Model I and Model II B.Sc. Physics and B.Sc. Physics EEM)
[2013 to 2016 Admissions]

Time: Three Hours

Maximum Marks: 60

Part A

Answer all questions.
Each question carries 1 mark.

- 1. What are the two states to represent quantities in a binary system?
- 2. Convert the decimal number 120 to its equivalent Octal number.
- 3. How AND function is defined in Boolean algebra?
- 4. Find 1's complement of 0000.
- 5. What is a truth table?
- 6. What are demultiplexers?
- 7. Define the term buffer register.
- 8. State the principle of a flip-flop.

 $(8 \times 1 = 8)$

Part B

Answer any six questions. Each question carries 2 marks.

- 9. How hexadecimal system is different from Octal system?
- 10. What are the rules for binary addition?
- 11. What is ASCII code?
- 12. Obtain the NOT operation.
- 13. What are Karnaugh maps? Explain.
- 14. List out NAND gate applications.
- 15. What is a full adder? Explain.
- 16. What is meant by clocked RS flip-flop?

- 17. List the advantages of half adder.
- 18. State and explain the principle of binary ripple counter.

 $(6 \times 2 = 12)$

Part C

Answer any **four** questions. Each question carries 4 marks.

- 19. Write a shortly on BCD codes.
- 20. How an AND gate is different from OR gate? Explain.
- 21. State and explain duality theorem.
- 22. Obtain the operation of NOR gates.
- 23. Bring out the working of an encoder.
- 24. Explain the operation of BCD ripple counter.

 $(4 \times 4 = 16)$

Part D

Answer any two questions. Each question carries 12 marks.

- 25. Discuss the different number systems with examples.
- 26. State and verify Demorgan's theorem. Discuss demorganisation.
- 27. Discuss NAND and XOR gates with truth tables.
- 28. Write shortly on : (i) Ladder type D/A converter ; and (ii) Counter type A/D converter.

 $(2 \times 12 = 24)$