${f E}$	2939
---------	------

(Pages: 2)

Reg. No	********
Name	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, APRIL 2022

Fifth Semester

Core Course—PHYSICAL OPTICS AND PHOTONICS

(Common for Model I and Model II B.Sc. Physics, B.Sc. Physics Instrumentation and B.Sc. Physics EEM)

[2013 to 2016 Admissions]

Time: Three Hours

Maximum Marks: 60

Part A

Answer all questions.

Each question carries 1 mark.

- What are coherent waves ?
- 2. Why two independent sources cannot produce observable interference pattern?
- 3. How zone plate is different from a convex lens?
- 4. Define grating element.
- 5. What are the uses of pile of plates?
- 6. What is a half wave plate?
- 7. Define stimulated emission.
- 8. What is acceptance angle?

 $(8 \times 1 = 8)$

Part B

Answer any six questions.

Each question carries 2 marks.

- 9. How path difference is different from phase difference? Explain.
- 10. State the properties of thin films.
- 11. What are Newton's rings?
- 12. List the characteristics of Fraunhofer diffraction.
- 13. State and explain Brewster's law.
- 14. Explain the feature of calcite crystal.
- 15. Define specific rotation.

- 16. What is meant by optical pumping?
- 17. Write down the principle of holography.
- 18. Define numerical aperture.

 $(6 \times 2 = 12)$

Part C

Answer any **four** questions. Each question carries 4 marks.

- 19. Newton's rings are formed in a reflected light of wavelength 590 nm. The diameter of the 10th dark ring is 0.5×10^{-2} m. Find the radius of curvature of the lens.
- 20. Calculate the possible order of spectra with a plane transmission grating having 18000 lines per inch when light of wavelength 450 nm is used.
- 21. Find the radii of the first three transparent zones of a zone plate whose first focal length is 1 m. for a wavelength 589 nm.
- 22. Calculate the thickness of double refracting plate capable of producing path difference of λ 4 beween e-ray and o-ray waves for $\lambda = 589$ nm.
- 23. Find the ratio of populations of the two states in Helium-Neon laser that produces light of wavelength 639 nm at 27°C.
- 24. The refractive index of the cladding is 1.46 and the core refractive index is 1.54. Calculate the numerical aperture of the optical fiber.

 $(4 \times 4 = 16)$

Part D

Answer any **two** questions. Each question carries 12 marks.

- 25. Describe the determination of wavelength of sodium light with Newton's rings.
- 26. Discuss Fraunhofer diffraction at a single slit with theory.
- 27. Obtain Einstein's relation and conditions for light amplification. Discuss the construction and working of ruby laser for lasing action.
- 28. Describe optical fiber communication system with merits and demerits. Bring out the advantages of optical fibers.

 $(2 \times 12 = 24)$