E	293	0
L	430	U

(Pages: 3)

Reg.	No

Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, APRIL 2022

Fifth Semester

Core Course—ABSTRACT ALGEBRA

(Common for Model I and Model II B.Sc. Mathematics)

[2013 to 2016 Admissions]

Time: Three Hours

Maximum Marks: 80

Part A

Answer all questions.

Each question carries 1 mark.

- 1. Define * on Q+ by $a*b = \frac{ab}{2}$. Find the inverse of a.
- 2. Define cyclic group.
- 3. Find the number of elements in the symmetric group S_n of n elements.
- 4. Find the number of generators of cyclic group of order 12.
- 5. Define simple group.
- 6. Find the order of the factor group $Z_4 \times Z_{12}/\langle (2,2) \rangle$.
- 7. Describe all units in the ring Z_5 .
- 8. Define integral domain.
- 9. Find the characteristic of the ring of integers Z.
- 10. Every ideal in a ring is a subring of the ring. State True or False.

 $(10 \times 1 = 10)$

Part B

Answer any **eight** questions. Each question carries 2 marks.

- 11. Let G be a group and H and K are subgroups of a group G. Prove that $H \cap K$ is a subgroup of G.
- 12. Let G be a group with binary operation *. Prove that a*b=a*c implies b=c and b*a=c*a implies b=c for $a,b,c\in G$.
- 13. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 6 & 3 & 7 & 4 & 5 & 1 \end{pmatrix} \in S_8$. Express σ as a product of transpositions.

Turn over

- 14. Find the number of elements in the cyclic subgroup of Z_{42} generated by 30.
- 15. For each $g \in G$. Define $i_g : G \to G$ by $xi_g = g^{-1}xg$. Prove that i_g is an automorphism of G.
- 16. Prove that every subgroup of an abelian group is normal.
- 17. Let ϕ be a homomorphism of a group G intô a group G', Let H be a normal subgroup of G. Prove that H ϕ is a normal subgroup of G'.
- 18. Find all solutions of the equation $x^3 2x^2 3x = 0$ in \mathbb{Z}_{12} .
- 19. If p is a prime prove that Z_p is a field.
- 20. Let R be a ring with unity 1. Prove that R has characteristic n > 0 if and only if n is the smallest positive integer such that $n \cdot 1 = 0$.
- 21. Prove that a field contains no proper non-trivial ideals.
- 22. Prove that nZ is an ideal of Z.

 $(8 \times 2 = 16)$

Part C

Answer any six questions. Each question carries 4 marks.

- 23. Prove that in a group G, the identity and inverses are unique.
- 24. Let S be the set of all real numbers except 1. Define * on S by a*b=a+b+ab.
 - (a) Show that * is a binary operation.
 - (b) Show that (S, *) is a group.
 - (c) Find the solution of the equation 2 * x * 3 = 7 in S.
- 25. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$, $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$ be two permutations in S₆. Compute $\sigma \tau$ and $\sigma \tau^2$.
- 26. Let G and G' be two groups and ϕ be an isomorphism from G to G'. Prove that ϕ maps identity onto identity and inverses onto inverses.
- 27. Prove that Z and Q both under addition are not isomorphic.
- 28. Let H be a subgroup of a group G. Prove that the relation $a \equiv_r b \pmod{H}$ if and only if $a^{-1}b \in H$ is an equivalence relation.
- 29. Let H be a subgroup of a group G. Prove that the operation of induced multiplication is well defined on the left (right) cosets of H if and only if every left coset is a right coset.
- 30. Prove that $\phi: Z \to R$ under addition defined by $n\phi = n$. Also find image and kernel of ϕ .
- 31. Prove that every finite integral domain is a field.

 $(6 \times 4 = 24)$

Part D

Answer any two questions. Each question carries 15 marks.

- 32. (a) List the elements in the dihedral group D_4 .
 - (b) Construct the multiplication table for elements in \mathbf{D}_4 .
 - (c) Find all subgroups of \mathbf{D}_4 of order 2.
- 33. Find all subgroups of ${\bf Z}_{12}$ and give their lattice diagram.
- 34. State and prove Cayley's theorem.
- 35. (a) State and prove fundamental theorem of homomorphism.
 - (b) Prove that $R = \{a + b\sqrt{2}/a, b \in Q\}$ with usual addition and multiplication is a ring.

 $(2 \times 15 = 30)$