20	9	E
29	O	U

(Pages: 3)

Reg.	No	**********	
-17700007531			

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, APRIL 2022

Fifth Semester

Core Course—DIFFERENTIAL EQUATIONS

(Common for Model I and Model II, B.Sc. Mathematics and B.Sc. Computer Applications)
[2013 to 2016 Admissions]

Time: Three Hours

Maximum Marks: 80

Part A

Answer all questions.

Each question carries 1 mark.

- 1. Write the general form of a homogeneous differential equation.
- 2. What is an exact differential equation?
- 3. Write Bernoulli's differential equation.
- 4. Distinguish between general solution and particular solution.
- 5. Find the general solution of $\frac{d^2y}{dx^2} + 25y = 0$.
- 6. Solve the equation $(D-1)^2 y = 0$.
- 7. Write Bessel's function of the first kind of order -n.
- 8. Write the parametric representation of a surface.
- 9. Write the Lagrange's equation.
- 10. Write the order and degree of the equation $x \frac{\partial \theta}{\partial x} + y \frac{\partial \theta}{\partial y} + \frac{\partial \theta}{\partial t} = 0$.

 $(10 \times 1 = 10)$

Part B

Answer any eight questions. Each question carries 2 marks.

- 11. Find an integrating factor of the equation $(y-2x^3)dx-x$ (1-xy)dy=0.
- 12. Represent the family of all circles through the origin and tangent to the y-axis in the form F(x, y, c) = 0.
- 13. Test whether $(2x + e^y)dx + xe^ydy = 0$ exact.

Turn over

- 14. Solve the equation $y = p \sin p + \cos p$.
- 15. Represent the family of curves $e^x y = c$ by differential equations.
- 16. Solve the equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 0.$
- 17. Find the particular solution of $\frac{d^2y}{dx^2} 13\frac{dy}{dx} + 12y = e^{-2x}$.
- 18. Find the equation of the tangent plane to the surface at the point (x, y, z).
- 19. Form the partial differential equation by eliminating a and b from the equations z = ax + by + a.
- 20. Find the partial differential equation from z = x + y + f(xy).
- 21. Define the terms ordinary point and regular singular point.
- 22. Express $J_5(x)$ in terms of $J_0(x)$ and $J_1(x)$.

 $(8 \times 2 = 16)$

Part C

Answer any six questions. Each question carries 4 marks.

- 23. Solve the equation $e^y dx + (xe^y + 2) dy = 0$.
- 24. Solve $y = p \tan p + \log \cos p$.
- 25. Find the orthogonal trajectories of $y = \sqrt{x+c}$.
- 26. Solve $(D^2 + 4)y = \cos 3x$.
- 27. Use the method of undetermined coefficients to solve $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + y = 3e^x$.
- 28. Show that $\frac{d}{dx} [x^{-n} J_n(x)] = -x^{-n} J_{n+1}(x)$.
- 29. Solve in series the equation $\frac{d^2y}{dx^2} + xy = 0$.
- 30. Solve a(p+q) = z.
- 31. Solve $\left(\frac{y^2z}{x}\right)p + xzq = y^2$. $(6 \times 4 = 24)$

Part D

Answer any two questions. Each question carries 15 marks.

- 32. (a) Solve by the method of variation of parameters $\frac{d^2y}{dx^2} + 4y = \tan 2x$.
 - (b) Solve $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} 4y = x$.
- 33. Obtain the power series solution of $x \frac{d^2y}{dx^2} + \frac{dy}{dx} y = 0$.
- 34. (a) Show that $J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$.
 - (b) Prove that $J_{5/2}(x) = \sqrt{\frac{2}{\pi x}} \left[\frac{3 x^2}{x^2} \sin x \frac{3}{x} \cos x \right].$
- 35. Solve the equation (y-z) p + (z-x) q = x y and find the particular solution which passes through the parabola $y = x^2$, x = 2.

 $(2 \times 15 = 30)$