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B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, APRIL 2022

~ Fifth Semester
Core Course—MATHEMATICAL ANALYSIS

(Common for Model I and Model II B.Se. Mathematics and B.Sc. Computer Applications)
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Part A

Answer all questions.
Each question carries 1 mark.

Give an example of a set. which is bounded above but not bounded below.

- ="
Find the infimum and supremum if it exists for the set { o N }

State Archimedian property of real numbers.

Is Q, the setof rational numbers order complete.
What is the derived set of the set {1,-1,13,-1%,14,-1%,...}?

Define countable and uncountable sets.

Define a bounded sequence.

1
What is lim n™ ?
In—>0

Ifz=2+3i, whatisz1?

g Pyt
(10 x 1 =10)
Part B :

Answer any eight questions.
Each question carries 2 marks.

Show that the greatest member of a set, if it exists is the supremum of the set.

State Dedekind’s form of completeness property.
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1 .
Find the smallest and greatest member of the set {;, ne N} if they exist.

Define an open set is the set Q of rational numbers open in R

What is a perfect set ? Give an example.

Show that the set S={x:0<x<1} in R is open, but not closed.

Define the interior of a set. What is the iriterior of N and Q ?

Give an example of a sequence (a) which oscillates infinitely ; (b) which oscillates finitely.

Define a Cauchy sequence. Give an example.

Define a monotonic sequence. Give an example.
Locate z; + z, and z; — 2, where z; =-1+2i,2, =1+ 4i.

Find the square roots of 14./3j and express them in rectangular co-ordinates.
' (8x2=16)
Part C

Answer any six questions.
. Each question carries 4 marks.

Show thaff —éhe real number field is Archimedean.
Show that every open interval is an open set.

Show that a set is closed iff its complement is open.

Show that every convergent sequence is bounded.

: i e 3
Show that the sequence {Sn} where S, = 1+§+'§ +---+; cannot converge.
‘ _ GriD@e-2) _,
Show that lim P b .
Show thtithe sequence {S,} where §, = P is convergent.
2 i) 108 Bt S n

- 1. 1 '
gy ’!‘1‘1’?"{\/% +1 +\/nz+2 En n’ +4}—1-.

Sketch the points determined by the conditibn (a)Re (z2-1)=2; (b) |22 +i| = 4.
(6 x 4=24)



32.

%3

34.

35.

(b)
(a)

(b)

(b)

(a)

(b)

3 . : E 2934
PartD

Answer any two questions.
Each question carries 15 marks.

State and prove Bolzano-Weierstrass theorem, for sets.
Show that a countable union of countable sets is countable.

State and prove Cauchy’s general principle of convergence.

. n
Use Cauchy’s general principle of convergence to show that {m} is convergent.

Show that [,#] converges iff —1 <r < 1.

Show that a necessary and sufficient condition for the convergence of a monotonic
sequence is that it is bounded.

State and prove Cauchy’s first theorem on limits.

; . : 3
Let {S,} be a sequence such that Sn+1 = 2“8—, n21and S, =5 Show that {S,} is

n

bounded and monotonic and converges to 1.

(2% 15 = 30)



