II AUAU	\mathbf{E}	2925
---------	--------------	------

P	ag	es	:	2

Reg. No	0
•	
Nama	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, APRIL 2022

Fifth Semester

Core Course—QUANTUM MECHANICS AND SPECTROSCOPY

(Common for B.Sc. Chemistry Model I, Model II, B.Sc. Petrochemicals and B.Sc. Chemistry Environment and Water Management)

[2013-2016 Admissions]

Time: Three Hours

Maximum Marks: 60

Part A

Answer all questions.

Each question carries 1 mark.

- 1. State de-Broglie relationship.
- 2. What is Compton effect?
- 3. Why H₂ molecule is microwave inactive?
- 4. State Grotthuss-Drapers law.
- 5. What are operators?
- 6. What is meant by normalised wave functions?
- 7. What are hot bonds?
- 8. How many peaks will be there in the NMR spectra of acetaldehyde?

 $(8 \times 1 = 8)$

Part B

Answer any six questions. Each question carries 2 marks.

- 9. What are wave functions? Explain its significance.
- 10. Explain the significance of the Heisenberg's uncertainty principle.
- 11. Explain the term zero point energy.
- 12. What are Stokes and antistokes lines?
- 13. Write note on Frank-Condon principle.
- 14. Sketch the NMR spectra of acetophenone.
- 15. Write note on Beer-Lambert's law.

- 16. What is meant by Quantum Yield?
- 17. Write note on black body radiations.
- 18. What is chemiluminescence?

 $(6 \times 2 = 12)$

Part C

Answer any four questions. Each question carries 4 marks.

- 19. Differentiate between electromagnetic waves and matter waves.
- 20. Discuss the vibrational energy levels of a harmonic accelerator. Write expressions for energy and force constant.
- 21. Briefly discuss shielding and de-shielding with suitable examples.
- 22. Discuss the principle of mass spectroscopy.
- 23. Derive energy equation for a particle in a one dimensional box.
- 24. Show that for a rigid diatomic rotar, the moment of inertia is given by $I = \mu r^2$.

 $(4 \times 4 = 16)$

Part D

Answer any two questions. Each question carries 12 marks.

- 25. (a) Briefly discuss the postulates of quantum mechanics.
 - (b) Write brief note on quantum numbers explain its significance.
- 26. (a) Compare Valence bond and Molecular orbital theory.
 - (b) Write a short note on Quantum theory of Raman effect.
- 27. (a) Briefly discuss the electronic spectrum of polyatomic molecules. Explain the different types of transitions.
 - (b) Discuss the principle of NMR spectroscopy.
- 28. (a) Discuss the Jablonski diagram of depecting various photophysical process.
 - (b) Discuss photosensitized reaction using suitable example.

 $(2 \times 12 = 24)$