

Reg. No
Name

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, SEPTEMBER 2024

Sixth Semester

Core Course—COMPLEX ANALYSIS

(For B.Sc. Mathematics Model I, Model II)

[Prior to 2013 Admissions]

Time: Three Hours

Maximum Weight: 25

Part A

Answer all questions.

Each bunches of four questions carries a weight of 1.

- I. 1 Find the domain of the function $f(z) = \operatorname{Arg}\left(\frac{1}{z}\right)$
 - 2 Define limit of a function.
 - 3 Find f'(z), when $f(z) = (1-4z^2)^3$.
 - 4 Define an analytic function.
- II. 5 Give an example of an entire function.
 - 6 What is the period of e^z .
 - 7 Define sinhz coshz.
 - 8 Evaluate $\int_{1}^{2} \left(\frac{1}{t} i\right)^{2} dt$.

E 6160

- III. 9 Give an example of a simple closed contour.
 - 10 If C is any simple closed contour, find $\int_{C} \exp(z^3) dz$.
 - 11 Define a simply connected domain.
 - 12 Define absolute convergence of a series of complex numbers.
- IV. 13 What are the isolated singularities of $\frac{1}{\sin(\pi/z)}$.
 - 14 Define residue of a function f.
 - 15 Define removable singularity.
 - 16 What type of singularity the function $e^{1/z}$ have.

 $(4 \times 1 = 4)$

Part B

Answer any **five** questions.

Each question carries a weight of 1.

- 17 Show that f'(z) does not exist at any point if $f(z) = \overline{z}$.
- 18 Write the singularities of $f(z) = \frac{z^3 + 4}{(z^2 3)(z^2 + 1)}$.
- 19 If $f(z) = \cosh x \cos y + i \sinh x \sin y$. Find u_x, u_y, v_x, v_y .
- 20 Evaluate $\int_{C} \frac{z+2}{z}$, where C is the circle $z = 2e^{i\theta}$, $0 \le \theta \le 2\pi$.
- 21 Use Cauchy-Goursat theorem to evaluate $\int_C \frac{1}{z^2 + 2z + 2} dz$ where C is the unit circle |z| = 1.

E 6160

- 22 State Laurent's theorem.
- 23 Find the residue at z = 0 of the function $z \cos \left(\frac{1}{z}\right)$.
- 24 Find the order of the pole and residue of the function $\frac{1-\cosh z}{z^3}$ at the pole.

 $(5 \times 1 = 5)$

Part C

Answer any **four** questions.

Each question carries a weight of 2.

- 25 Show that f'(z) and f''(z) exist every where and find f''(z) for the function f(z) = iz + 2.
- 26 Show that if f'(z) = 0 everywhere in a domain D, then f(z) must be constant throughout D.
- 27 Find the value of the integral of g(z) around the circle (z-i)=2 in the positive sense when $g(z)=\frac{1}{z^2+4}$.
- 28 State and prove Cauchy's inequality.
- 29 Find the Laurent series that represents the function $f(z) = z^2 \sin\left(\frac{1}{z^2}\right)$ in the domain $0 < |z| < \infty$.
- 30 Use Cauchy's residue theorem to evaluate the integral of $\frac{\exp(-z)}{z^2}$ around the circle |z|=3 in the positive sense.

 $(4 \times 2 = 8)$

E 6160

Part D

Answer any two questions.

Each question carries a weight of 4.

- 31 (a) State and prove fundamental theorem of algebra.
 - (b) State maximum modules principle.

32 Evaluate
$$\int_{0}^{\infty} \frac{x^2}{x^6 + 1} dx.$$

- 33 (a) Show that when 0 < |z| < 4 $\frac{1}{4z z^2} = \frac{1}{4z} + \sum_{n=0}^{\infty} \frac{z^4}{4^{n+2}}$.
 - (b) State and prove Taylor's theorem.

 $(2 \times 4 = 8)$

