

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, SEPTEMBER 2024

Sixth Semester

Core Course - REAL ANALYSIS

(for B.Sc. Mathematics Model I, B.Sc. Mathematics Model II and B.Sc. Computer Applications)

(Prior to 2013 Admissions)

Time: Three Hours Maximum Weight: 25

Part A

Answer all the questions. Each bunch of four questions has weight 1.

- I. 1 Show that the series $\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \cdots$ is not convergent.
 - 2 State Cauchy's general principle of convergence.
 - 3 Define an alternating series.
 - 4 Define a geometric series.
- II. 5 State Raabe's test.
 - 6 Define absolute convergence of a series.
 - 7 Is the function $f(x) = \frac{x |x|}{x}$ continuous at x = 0.
 - 8 What is discontinuity of the first form?
- III. 9 Define uniform continuity of a function defined on an interval.
 - 10 What is discontinuity of the second page?
 - 11 Define the upper sum U(p,f) of a bounded real function defined on an interval.
 - 12 Define the Riemann sum S(p, f).

- IV. 13 State the fundamental theorem of calculus.
 - 14 State Cauchy's criterion for uniform convergence.
 - 15 Is the sequence $\{x^n\}$ converges uniformly on [0, 1].
 - 16 State Dirichlet's test for uniform convergence.

 $(4 \times 1 = 4)$

Part B

Answer any **five** questions. Each question has weight 1.

- 17 Investigate the behaviour of the series whose $n^{\rm th}$ term is $\sin^{1/n}$.
- 18 Show that the series $1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$ is convergent.
- 19 Test the convergence of the series whose n^{th} term is $\left\{ \left(n^3 + 1\right)^{1/3} n\right\}$.
- 20 Show that the function defined by $f(x) = \begin{cases} \frac{\sin 2x}{x}, & \text{when } x \pm 0 \\ 1, & \text{when } x = 0 \end{cases}$ has a removable discontinuity at the origin.
- 21 Examine the continuity at x = 1 for the function $f(x) = \begin{cases} 2x, & \text{if } 0 \le x \le 1 \\ 3, & \text{if } x = 1 \\ 4x, & \text{if } 1 < x \le 2 \end{cases}$.
- 22 Show that the constant function K is integrable and $\int_{a}^{b} K dx = K(b-a)$.

E 6159

23 If f is continuous and non-negative on [a, b], show that $\int_a^b f dx \ge 0$.

24 Show that the sequence $\{f_n\}$ where $f_n(x) = \frac{nx}{1 + n^2 x^2}$ is not uniformly convergent in any interval containing zero.

 $(5 \times 1 = 5)$

Part C

Answer any **four** questions. Each question has weight 2.

- 25 Test the behaviour of the series $\frac{1^2.2^2}{1!} + \frac{2^2.3^2}{2!} + \frac{3^2.4^2}{3!} + \dots$
- 26 Test the convergence of the series $\frac{x}{1} + \frac{1 \cdot x^3}{2 \cdot 3} + \frac{1 \cdot 3 \cdot x^5}{2 \cdot 4 \cdot 5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} + \frac{x^7}{7} + \dots$
- 27 Show that the function f defined on R by $f(x) = \begin{cases} 1 \text{ if } x \text{ is rational} \\ 0 \text{ if } x \text{ is irrational} \end{cases}$ is discontinuous at every point.
- 28 Show that every continuous function is integrable.
- 29 If the functions f, f_1, f_2 where $f = f_1 \pm f_2$ are bounded and integrable on [a, b], show that

$$\int_{a}^{b} f dx = \int_{a}^{b} f_1 dx \pm \int_{a}^{b} f_2 dx.$$

30 State and prove Weierstrass µ test for uniform convergence.

 $(4 \times 2 = 8)$

E 6159

Part D

Answer any **two** questions. Each question has weight 4.

- 31 State and prove D'Alembert's ratio test.
- 32 (a) Prove that a function which is continuous on a closed interval is also uniformly continuous on that interval.
 - (b) Show that the function $f(x) = \frac{1}{x}$ is not uniformly continuous on (0, 1).
- 33 Prove that a necessary and sufficient condition for the integrability of a bounded function f is that to every $\in > 0$, there corresponds $\delta > 0$ such that for every partition P of [a, b] with $\mu(p) < \delta$, $U(p,f) L(p,f) < \in$.

 $(2 \times 4 = 8)$

