

Reg. No	••••••	•••
Name		

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, NOVEMBER 2022

Fourth Semester

Core Course—OPTO-ELECTRONICS (For the Programme B.Sc. Electronics) (2013—2016 Admissions)

Time: Three Hours Maximum Marks: 80

Part A

Answer all questions.

$Each\ question\ carries\ 1\ mark.$		
1.	In the case of diode lasers, it is not necessary to use external mirrors to provide ————feedback.	
2.	logical logic	
3.	———— is a semiconductor material for which the lowest energy absorption takes place by indirect optical transitions.	
4.	Phototransistors offer — response time as compared to photodiodes.	
5.	is preferred for long distance communication.	
6.	Population inversion can be achieved in a material by an action called ———.	
7.	is an efficient electro-optic modulator material.	
8.	In an optical fibre, the concept of Numerical aperture is applicable in describing the ability of ————.	
9.	A multimode step index fibre has a large core diameter of range ————.	
10.	In single mode fibres, the most beneficial index profile is ———————————————————————————————————	

 $(10 \times 1 = 10)$

Turn over

Part B

Answer any **eight** questions. Each question carries 2 marks.

- 11. Explain the dual nature of light.
- 12. What are magneto-optic devices?
- 13. What do you mean by avalanche breakdown?
- 14. What is population inversion in lasers?
- 15. What is meant by optical pumping in lasers?
- 16. Draw the refractive index profiles of step index and graded index fibres.
- 17. Name the different types of display devices.
- 18. What is a Quantum Well structure?
- 19. Write a short note on thermal detector.
- 20. Give the reasons of attenuation and distortion of light through the optical fibre.
- 21. What are the disadvantages of multimode step index fibre?
- 22. Define numerical aperture of a step index fibre.

 $(8 \times 2 = 16)$

Part C

Answer any **six** questions. Each question carries 4 marks.

- 23. What are the different pumping schemes for lasers? Explain.
- 24. Why a single mode fibre is preferred for communication purpose? Explain.
- 25. Explain the working of a solar cell and discuss the current voltage characteristics.
- 26. An InGaAsP surface emitter has an activation energy of 1 eV with a constant of proportionality (β_0) of 1.84×10^7 h⁻¹. Estimate the CW operating lifetime for the LED with a constant junction temperature of 17°C, if it is assumed that the device is no longer useful when its optical output power has diminished to 0.67 of its original value.

E 3764

- 27. The total efficiency of an injection laser with a GaAs active region of 1.43eV. Calculate external power efficiency of the device.
- 28. Explain LED characteristics.
- 29. An optical fibre has an acceptance angle of 30° and a core of refractive index 1.4. Calculate the refractive index of cladding.
- 30. Distinguish between absorption and radiation in semiconductor devices. How it is related to energy band structures? Explain.
- 31. Write a note on EL and CL displays.

 $(6 \times 4 = 24)$

Part D

Answer any **two** questions. Each question carries 15 marks.

- 32. With the help of neat diagram explain the working of a liquid crystal display.
- 33. What is quantum efficiency? Discuss the techniques and parameter needed to be optimized to maximize quantum efficiency of an LED.
- 34. Discuss in detail about the construction and working of photo conductors. Also explain its classification.
- 35. With the help of an energy level diagram explain the working of helium neon laser.

 $(2 \times 15 = 30)$

