-		000			•

Reg. No	•
Name	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, NOVEMBER 2022

Fourth Semester

Complementary Course—OPERATIONS RESEARCH—NON-LINEAR PROGRAMMING

(For B.Sc. Mathematics—Model II)

[2013—2016 Admissions]

Time: Three Hours Maximum Marks: 80

Part A

Answer all questions.

Each question carries 1 mark.

- 1. What is integer programming?
- 2. What is the difference between integer programming and mixed integer programming?
- 3. What do you mean by branch and bound technique?
- 4. Define 0-1 programming.
- 5. What is a Lagrangian function?
- 6. Write the matrix form of general non-linear programming problem.
- 7. Define Saddle point.
- 8. Define quadratic programming problem.
- 9. Define positive semi definite quadratic form.
- 10. Define a separable programming problem.

 $(10 \times 1 = 10)$

Part B

Answer any **eight** questions.

Each question carries 2 marks.

- 11. What is the difference between integer programming and linear programming.
- 12. Explain Gomory's cutting plane algorithm.

Turn over

E 3719

- 13. Explain the applications of integer programming models.
- 14. Write the necessary conditions for non-negative saddle point.
- 15. Show that $f(X) = 2x_1^2 + x_2^2$ is a convex function over all of \mathbb{R}^2 .
- 16. Give an example each of a positive definite and negative definite quadratic form.
- 17. Show that if $X^T QX$ is positive semi-definite, then it will be convex for all $X \in \mathbb{R}^4$, where Q be a symmetric $n \times n$ real matrix.
- 18. Split $f(x) = 5x_1^2 + x_2^2 3x_1 + 5x_2$ as the sum of two convex functions.
- 19. Consider the problem:

Minimize
$$Z = x_1^2 + 2x_2^2 - 2x_1$$

subject to the constraints

$$x_1^2 + x_2^2 \le 4, x_1, x_2 \ge 1.$$

Is this a convex programming problem.

If not how will you proceed to solve this problem.

- 20. Define a separable function. Give an example.
- 21. Write the necessary conditions for non-negative saddle points.
- 22. Explain Kuhn-Tucker conditions.

 $(8 \times 2 = 16)$

Part C

Answer any **six** questions. Each question carries 4 marks.

23. Find the optimum integer solution to the problem, Maximize Z = $x_1 + 2x_2$

subject to
$$5x_1 + 7x_2 \le 21$$

$$-x_1 + 3x_2 \le 8$$

 x_1, x_2 being non-negative integers.

- 24. Explain the steps of branch and bound algorithm.
- 25. Find the optimal solution to the following integer programming problem using Gomory's algorithm:

Maximize $Z = x_1 - x_2$

subject to the constraints:

$$x_1 + 2x_2 \le 4$$

$$6x_1 + 2x_2 \le 9$$

 $x_1, x_2 \ge 0, x_1, x_2$ are integers.

The optimal simplex table corresponding to the above problem is given below:

x_{13}	x_1	x_2	x_3	x_4	
$x_1 = 3/2$	1	2/6	0	1/6	
$x_2 = 5/2$	0	10/6	1	-1/6	
z = 3/2	0	8/6	0	1/6	

 x_3, x_4 are slack variables.

26. Obtain the necessary and sufficient conditions for the optimum solution of the following non-linear programming problem:

Minimize
$$Z = f(x_1, x_2) = 3e^{2x_1+1} + 2e^{x_2+3}$$

subject to the constraints : $x_1 + x_2 = 7$

and
$$x_1, x_2 \ge 0$$
.

27. Solve by using the method of Lagrangian multiplier, the problem:

Minimize
$$Z = 6x_1^2 + 5x^2$$

subject to the constraints:

$$x_1 + 5x_2 = 3$$

$$x_1, x_2 \ge 0.$$

Turn over

- 28. Explain the role of Lagrange multipliers in a non-linear programming problem.
- 29. How does a quadratic programming differ from a linear programming problem. Explain.
- 30. Solve by cutting plane method:

Maximize
$$Z = 7x_1 + 9x_2$$

subject to the

$$-x_1 + 3x_2 \le 6$$

$$7x_1 + x_2 \le 35$$

 $x_1, x_2 \ge 0$, and x_1 is an integer.

31. Solve graphically the non-linear programming problem:

Minimize
$$Z = (x_1 - 1)^2 + (x_2 - 2)^2$$

subject to the constraints:

$$0 \le x_1 \le 2, 0 \le x_2 \le 1.$$

 $(6 \times 4 = 24)$

Part D

Answer any **two** questions. Each question carries 15 marks.

32. Use Branch and Bound method to solve the integer programming problem:

Maximize
$$Z = 3x_1 + 4x_2$$

subject to the constraints:

$$3x_1 - x_2 + x_3 = 12$$

$$3x_1 + 11x_2 + x_4 = 66$$

$$x_j \ge 0, j = 1, 2, 3, 4.$$

33. Use Wolfe's method to solve the quadratic programming problem:

Maximize
$$Z = 8x + 10x_2 - x_1^2 - x_2^2$$

subject to
$$3x_1 + 2x_2 \le 6$$
,

$$x_1, x_2 \ge 0.$$

34. Use separable convex programming to solve the problem:

$$Maximize f(x) = 3x_1 + 2x_2$$

subject to the constraints

$$g(x) = 4x_1^2 + x_2^2 \le 16,$$

$$x_1, x_2 \ge 0.$$

35. Use K.T. conditions to solve the problem:

Minimize
$$Z = 6x_1^2 + 5x_2^2$$

subject to the constraints:

$$x_1 + 5x_2 \ge 3$$

$$x_1, x_2 \ge 0.$$

 $(2 \times 15 = 30)$

