00003690							

Reg. No
Name

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, NOVEMBER 2022

Fourth Semester

Complementary Course—STATISTICAL INFERENCE

(Common for B.Sc. Mathematics Model I Physics Model I and Computer Applications)
(2013 to 2016 Admissions)

Time: Three Hours

Maximum Marks: 80

Part A (Short Answer Questions)

Answer all questions.
Each question carries 1 mark.

- 1. Define the term 'statistic'.
- 2. Define efficiency of an estimator.
- 3. What are the sufficient conditions for consistency?
- 4. What is an MLE?
- 5. Define a most efficient estimator.
- 6. Define null hypothesis.
- 7. What is size of the test?
- 8. What are the assumptions of 't' test?
- 9. Define an F statistic.
- 10. Which test is used for testing the equality of variances of two normal distributions?

 $(10 \times 1 = 10)$

Part B (Brief Answer Questions)

Answer any **eight** questions. Each question carries 2 marks.

- 11. Distinguish between a point estimate and an interval estimate.
- 12. Show that sample mean is more efficient than sample median as an estimator of μ in $N(\mu, \sigma)$.
- 13. State Fisher-Neymann factorization criteria for sufficiency.

Turn over

E 3690

- 14. If t is unbiased for θ , show that t^2 is not unbiased for θ^2 .
- 15. Obtain method of moment estimator of λ when $X \to P(\lambda)$.
- 16. State Crammer Rao inequality.
- 17. State the 95% interval estimate of $\mu_1 \mu_2$ when $X_1 \to N(\mu_1, \sigma_1)$ and $X_2 \to N(\mu_2, \sigma_2)$ when σ_1 and σ_2 are known.
- 18. Distinguish between simple and composite hypothesis
- 19. Define (i) Type I error; (ii) Type II error.
- 20. What is a test statistic?
- 21. Write the format of one-way ANOVA table
- 22. What are the assumptions of F test?

 $(8 \times 2 = 16)$

Part C (Descriptive/Short Essay type questions)

Answer any **six** questions. Each question carries 4 marks.

- 23. Explain the desirable properties of a good estimator with a suitable example
- 24. Show that the sample mean \bar{x} is an unbiased estimator of $\frac{1}{\theta}$ for the distribution :

$$f(x,\theta) = \theta(1-\theta)^{x-1}, x = 1, 2, \dots, 0 < \theta < 1.$$

- 25. In $N(\mu,1)$, show that sample mean is a sufficient estimator of μ .
- 26. Find the MLE for the parameter θ in the probability function $f(x,\theta) = \theta e^{-ex}, x \ge 0, \theta > 0$.
- 27. The diameters of 200 ball bearing made by a machine during a week were found to have a mean 0.824 and 0.042. Find 99% confidence interval for the mean diameter of the ball bearings.
- 28. Distinguish between parametric and nonparametric tests of hypothesis.

E 3690

- 29. Suppose $X \to B(1,p)$, To test $H_0: p = \frac{1}{4}$ against $H_2: p = \frac{3}{4}$. We take a sample of 4 observations and reject H_0 if we get 4 successes. Compute α and β ?
- 30. Explain the large sample test for testing the equality of two population means.
- 31. Four coins are tossed 80 times, The distribution of the number of heads is given below:

No. of heads	0	1	2	3	4
Frequency	4	20	32	18	6

Test whether the coins are unbiased.

 $(6 \times 4 = 24)$

Part D (Long Essays)

Answer any **two** questions. Each question carries 15 marks.

- 32. For a random sampling from $\,N\!\left(\mu,\sigma^2\right)\!,\,$ Find the MLE $\,$ for :
 - (a) μ when σ^2 is known.
 - (b) σ^2 when μ is known.
- 33. The following sample of 11 observations is drawn from a normal population :

$$12.5,\ 11.5,\ 120,\ 11.5,\ 12.5,\ 13.5,\ 12.5,\ 13.0,\ 13.0,\ 13.5,\ 12.5.\ Test\ H_0: \sigma^2=4\ \ against\ \ H_1: \sigma^2=4\ .$$

34. The following are samples from two independent normal distributions. Test the hypothesis that they have the same mean assuming that the variances are equal (Take $\alpha = 0.05$):

Sample I	14	18	12	9	16	24	20	21	19	17
Sample II	20	24	18	16	26	25	18			

Turn over

E 3690

35. Set a table of ANOVA for the following data:

Plots	Variety						
	A	В	C	D			
1	200	230	250	300			
2	190	270	300	270			
3	240	150	145	180			

Test whether the varieties are different.

 $(2 \times 15 = 30)$

