

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, NOVEMBER 2022

Fourth Semester

Complementary Course—Mathematics

FOURIER SERIES, DIFFERENTIAL EQUATIONS, NUMERICAL ANALYSIS AND ABSTRACT ALGEBRA

(For the programme B.Sc. Physics/Chemistry/Petrochemicals/Geology/Food Science and Quality Control and Computer Maintenance and Electronics)

(2013–2016 Admissions)

Time: Three Hours

Maximum Marks: 80

Part A

Answer **all** questions. Each question carries 1 mark.

- 1. Define Fourier series for a periodic function f(x) with period $2\pi i$. Also define the Fourier co-efficients.
- 2. Are the following function even, odd or neither even nor odd $|x|, x + x^2$.
- 3. Find the radius of convergence of the series $\sum_{m=0}^{\infty} \frac{\left(-1\right)^m}{8^m} x^{3m}.$
- 4. Define the Legendre polynomial of degree n.
- 5. Find the order and degree of the partial differential equation:

$$\left(\frac{\partial z}{\partial x}\right)^2 + \frac{\partial^3 z}{\partial y^3} = 2x \left(\frac{\partial z}{\partial x}\right).$$

- 6. Give an example each of a non-linear and linear partial differential equation.
- 7. If X = 0.51 and is correct to two decimal places, then find the absolute accuracy and relative accuracy.

1/4

- 8. Define a group.
- 9. What is the order of the cyclic subgroup of \mathbb{Z}_4 generated by 3.
- 10. Define homomorphism and isomorphism of rings.

 $(10 \times 1 = 10)$

Turn over

E 3686

Part B

Answer any **eight** questions. Each question carries 2 marks.

11. Write the Legendre's polynomials:

$$p_0(x), p_1(x), p_2(x)$$
 and $p_3(x)$.

- 12. Define Gamma function. Find $\lceil (1) \rceil$ and $\lceil (2) \rceil$.
- 13. Find the radius of convergence of the series $\sum_{m=0}^{\infty} \frac{(2m)!}{(2m+2)(2m+4)} x^m.$
- 14. Find a partial differential equation by eliminating the arbitrary constants a and b from $z = (x-a)^2 + (y-b)^2$.
- 15. Find the partial differential equation by eliminating the arbitrary function f from the equation z = f(xy/z).
- 16. Two numbers are given as 2.5 and 48.289, both of which being correct to the significant figures given. Find their product.
- 17. Find the quotient q = x/y, where x = 4.536 and y = 1.32, both x and y being correct to the digits given. Find also the relative error in the result.
- 18. In the Maclaurin series expansion for e^x find n the number of terms such that their sum yields the value of e^x correct to 8 decimal places at x = 1.
- 19. Show that the inverse element is unique for each element a in a group G.
- $20. \quad \text{Describe all the elements in the cyclic subgroup of } GL(2,\mathbb{R}) \text{ generated by the } 2 \times 2 \text{ matrix } \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}.$
- 21. Compute $\ker(\phi)$ and $\phi(25)$ for $\phi: z \to z_7$ such that $\phi(1) = 4$.
- 22. Determine whether:

$$\big\{ \big(-1, 1, 2 \big), \big(2, -3, 1 \big), \big(10, -14, 0 \big) \big\}$$
 is a basis for α^3 over $\, \mathbb{R}$.

 $(8 \times 2 = 16)$

E 3686

Part C (Short Essays)

Answer any **six** questions. Each question carries 4 marks.

- 23. Find the Fourier series for the function $f(x) = \begin{cases} 1 \text{ if } 0 \le x \le \pi \\ 0 \text{ if } 0 \pi < \pi < 0 \end{cases}$ with period 2π .
- 24. Solve by power series method the equation y' + xy = 0.
- 25. Show that $J_0^1(x) = -J_1(x)$.
- 26. Solve the equation a(p+q)=z.
- 27. By false position method, obtain a root correct to three decimal places of the equation $x^3 x^2 1 = 0$.
- 28. By bisection method obtain a root of $x^3 4x 9 = 0$, correct to 3 decimal places.
- 29. Let A be a non-empty set and let S_A be the collection of all permutations of A. Show that S_A is a group under permutation multiplication.
- 30. Describe all ring homomorphisms of Z into $Z \times Z$.
- 31. Prove that intersection of subspaces of a vector space V is again a subspace of V over F.

 $(6 \times 4 = 24)$

Part D

Answer any **two** questions. Each question carries 15 marks.

- 32. (a) Find the Fourier series for the function $f(x) = x^2, -1 < x < 1$, with period p = 2L = 2.
 - (b) Find the Fourier sine and cosine series for the function $f(x) = \begin{cases} 0, & 0 < x < 2 \\ 1, & 2 < x < 4 \end{cases}$
- 33. Determine the surface which satisfies the differential equation:

 $(x^2-a^2)p+(xy-az\tan\alpha)q=xz-ay\cot\alpha$ and passed through the curve $x^2+y^2=a^2, z=0$.

Turn over

E 3686

- 34. (a) Use Newton-Raphson method to obtain a root correct to 3 decimal places of the equation $x + \log x = 2$.
 - (b) Use quotient difference method to obtain the approximate roots of the equation $x^3 7x^2 + (0) 2 = 0.$
- 35. (a) Let G be a cyclic group with generator a. Prove that if the order of G is infinite, then G is isomorphic to $(\mathbf{Z}_n, +)$. If G has finite order n, prove that G is isomorphic to $(\mathbf{Z}_n, +)$.
 - (b) Prove that is a finite dimensional vector space, every finite set of vectors spanning the space contains a subset that is a basis.

 $(2 \times 15 = 30)$

