MSc MATHEMATICS

MCQ (FOR PRIVATE EXAMS)

SEM IV- ME800403 COMBINATORICS

1.	deals with different arrangement of objects from a given set taken one or more at a time
	(a) Permutation
	(b) Combination
	(c) Both A and B
	(d) Neither A nor B
2.	P_0^n =
	(a) <i>n</i>
	(b) 0
	(c) 1
	(d) None of the above
3.	Eight students should be accommodated in two 3-bed rooms and one 2-bed rooms. In how many ways can they be accommodated?
	(a) 175
	(b) 120
	(c) 560
	(d) 240
4	In how many ways can 2 man and 2 waman sit around a table in the condition that no two waman sit
4.	In how many ways can 3 men and 3 women sit around a table in the condition that no two women sit together?
	(a) 12
	(b) 19
	(c) 7
	(d) 10
5.	20 persons are in a meeting. The number of ways in which they and the speaker can be seated at a circular table, if persons to sit at either side of the speaker are kept fixed? (a) 18! (b) 2 × 18!
	(c) $3 \times 17!$
	(d) 17!

6.	Find the number of possible ways to select 2balls from 5 similar balls. (a) 2 (b) 5 (c) 6 (d) 1
7.	Consider {1,2,3,4,5} If repetitions are allowed, how many 3 digit odd numbers can be made?
	(a) 65
	(b) 75
	(c) 120
	(d) 80
8.	Find the number of ways in which 8 girls can be seated in a line
	(a) 40320
	(b) 5040
	(c) 20160
	(d) 2^8
9.	Find the number of squares that can be made from a chess board. (a) 64 (b) 128 (c) 240 (d) 204
10	. How many handshakes will happen if 30 people handshake one another? (a) 435 (b) 900 (c) 60 (d) 450
11	In a bag there are 3 red boxes, a blue box and 2 white boxes. In how many ways can you arrange the balls so that all the balls of same colour come together? (a) 916 (b) 1256 (c) 428 (d) 1728
12	. Find the number of ways in which 10 digit numbers can be written simply using digits 1 and 2? (a) 10^2 (b) $10^1 \times 10^2$ (c) 2^{10} (d) 3^{10}
13	There are 5 strawberries, 4 apples, 3 oranges and 1 each of 3 other varieties of fruits. The number of ways of selecting one fruit of each kind is: (a) 60 (b) 24 (c) 30 (d) 120

 14. How many ways are there to pack six copies of the same book into four identical boxes, where a box can contain as many as six books? (a) 6 (b) 10 (c) 9 (d) 11
 15. In how many ways can be 10 examination papers be arranged so that the best and the worst paper never come together? (a) 2! 8! (b) 9 × 8! (c) 10! - 2! (d) 8 × 9!
 16. The number of ways to arrange n objects in a circular manner is given by (a) (n + 1)! (b) (n - 1)! (c) n! (d) (n/2)!
17. In how many ways, the letters off the word BIHAR can be rearranged? (a) 103 (b) 67 (c) 119 (d) 72
18. $C_r^n + C_r^n + 1 = C_x^{n+1}$. Then $x =$ (a) $r + 1$ (b) C_r^n (c) $r!$ (d) $(r + 1)!$
19. The total number of 4 digit numbers in which all digits are distinct is (a) 4563 (b) 4536 (c) 4532 (d) 3645
20. If $P_r^n = 3024$ and $C_r^n + 126$ $^{\rm n}P_r = 3024$ and $^{\rm n}C_r = 126$ then find r (a) 25 (b) 24 (c) 35 (d) 34
 21. There are 12 students in a party. Five of them are girls. In how many ways they can be seated if all the five girls sit together (a) 7! 5! (b) 12! - 5 (c) 8! 5! (d) 11!

22. What is (a) 24 (b) 30 (c) 25 (d) 20	the number of permutations of the five set {a,a,a,b,c}
. ,	nts out of 12 are in the same straight line then the number of triangles formed is
24. If a poly (a) 9 (b) 10 (c) 20 (d) 14	gon has 170 diagonal, how many sides will it have?
25. How ma one vow (a) 96 (b) 64 (c) 90 (d) 76	any 3 letter words can be formed from {a b,c,d,e,f} such that each word should contain atleast rel
26. How man	ny telephone connections can be allotted with 4 and 7 digits using digits 1-9?
(a) $9^4 + 1$	9^7
(b) $9^4 + 9$	\mathbf{e}^{7}
(c) $4! + 7$	7!
(d) 28	
27. 3 persons	s sit in a room with 8 vacant seats. They can seat themselves inways
(a) 24	
(b) 332	
(c) $8! + 1$	7!+ 6!
(d) 336	
$28. \frac{(n+1)!}{(n-2)!} = -$	·
(a) 1	n^3 - n
(b) 1	n^3 + n
(c) 1	n^2 - n
(d) 1	n^3

29. Number of 4 digit numbers greater than 7000 that can be formed from {3.5.7.8.9}
without digit repetition is
(a) $3 \times 4C_3$
(b) 5 X 4
(c) $3 \times 4P_3$
(d) 12
30. Number of permutations of the word MALAYALAM is
(a) $\frac{9!}{4!+2!+2!}$
(b) $\frac{9!}{4!X \ 2!X2!}$
(c) 9! - 4! X 2! X 2!
(d) 9! – (4! +2! +2!)
31. The value of the Ramsey Number, R(3,3) is (a) 4
(b) 6
(c) 7
(d) 9
32. The value of the Ramsey Number, R(3,5) is (a) 4
(b) 6
(c) 14
(d) 9
33. The value of the Ramsey Number, R(3,7) is

(a) 4 (b) 6 (c) 14 (d) 23

(a) 18 (b) 6 (c) 14 (d) 9

(a) 4 (b) 36 (c) 14 (d) 9

34. The value of the Ramsey Number, R(4,4) is

35. The value of the Ramsey Number, R(3,9) is

36.	The value of the Ramsey Number, R(3,8) is (a) 4 (b) 36 (c) 28 (d) 9
37.	If R(3,5)=23 and R(4, 4)=18, then R(4,5) is less than (a) 34 (b) 36 (c) 28 (d) 42
38.	$R(m,n) \le R(m-1,n) + $ (a) $R(m,n-1)$ (b) $R(m-1,n-1)$ (c) $R(n-1,n-1)$ (d) $R(m,n)$
39.	$\frac{\leq R(m-1,n) + R(m,n-1)}{\text{(a) } R(m,n-1)}$ $\text{(b) } R(m,n)$ $\text{(c) } R(n-1,n-1)$ $\text{(d) } R(m+1,n+1)$
40.	$R(m,n) \le R(m,n-1) + \underline{\hspace{1cm}}$ (a) $R(m-1,n)$ (b) $R(m-1,n-1)$ (c) $R(n-1,n-1)$ (d) $R(m,n)$
41.	Which of the following statement is the pigeon hole principle? I: When kn+1 objects are put among n boxes, one box will contain k+1 objects II: When kn objects are put among n boxes, one box will contain k+1 objects
	(a) Both I and II
	(b) Not I but II
	(c) I but not II
	(d) None of I and II
42.	Which of the following statement is NOT the pigeon hole principle? (a) When kn objects are put among n boxes, one box will contain k+1 objects

- (b) When kn objects are put among n boxes, at most box will contain k+1 objects
- (c) When kn+2k objects are put among n+1 boxes, one box will contain k+1 objects
- (d) When kn+1 objects are put among n boxes, at least one box will contain k+1 objects
- 43. Which of the following statement is the pigeon hole principle?
 - (a) When n objects are put among n boxes, one box will contain 2 objects
 - (b) When n objects are put among n+1 boxes, one box will contain 2 objects
 - (c) When n+1 objects are put among n boxes, one box will contain 2 objects
 - (d) When n objects are put among n boxes, one box will contain 2 objects

4	44. Which of the following statement is NOT the pigeon hole principle? (a) When 2n objects are put among n boxes, one box will contain 3 objects (b) When 2n objects are put among n boxes, at least one box will contain 3 objects (c) When 2n objects are put among n boxes, at most one box will contain 3 objects (d) When 2n objects are put among n boxes, no box will contain 3 objects
	45. Which of the following statement is the pigeon hole principle? (a) When kn objects are put among n boxes, one box will contain k+1 objects (b) When kn objects are put among n boxes, at least one box will contain k+1 objects (c) When kn objects are put among n boxes, at most one box will contain k+1 objects (d) When kn objects are put among n boxes, no box will contain k+1 objects 46. The minimum number of persons in a party to ensure that there are 3 mutual strangers is (a) 3 (b) 6 (c) 9 (d) 12
4	47. In any group of 7 persons, who are males or females, (a) At least 3 are males (b) At most 4 are males (c) At most 3 are females (d) At least 3 are females
4	48. In a group of 3000 people, the number of people with the same birth day is (a) 1500 (b) At least 1500 (c) At least 9 (d) At most 7
2	 49. Which of the following is true for a set of 10 points chosen within a square of side 3? (a) There are 2 points at a distant at most √2 (b) There are 3 points at a distant at most √3 (c) There are 3 points at a distant at least √2 (d) There are 4 points at a distant at most √2
	 50. Ramsey number R(m, n) exists for (a) For all integers m, n (b) For all positive integers m, n (c) For all integers m, n greater than 1 (d) For all positive integers m, n greater than 2
	51. Let $F(n,m)$; $n,m \in N$, denote the number of surjective mappings from N_n to N_m . Then $F(n,m) = \cdots$ (a) $F(n,m) = \sum_{k=0}^{m} (-1)^k {m \choose k} (m-k)^n$

```
(a) F(n,m) = \sum_{k=0}^{m} (-1)^k {m \choose k} (m-k)^n

(b) F(n,m) = \sum_{k=0}^{m} (-1)^k {m \choose k} m^n

(c) F(n,m) = \sum_{k=0}^{m} (-1)^k {m \choose k} (m-k)^{n+1}

(d) F(n,m) = \sum_{k=0}^{m} {m \choose k} (m-k)^n
```

52. Let $n, m \in N$, if n < m, then S(n, m) = -----

- (a) 0
- (b) 1
- (c) -1
- (d) None of these

- 53. A permutation $a_1, a_2, ..., a_n$ of N_n such that $a_i \neq i$, for each i = 1, 2, ..., n is called -----
 - (a) Combination
 - (b) Derangement
 - (c) Convolution
 - (d) Rearrangement
- 54. Which of the following is the correct representation of $|A \cup B|$ by Principle of Inclusion and Exclusion, if $A \cap B = \emptyset$?
 - (a) $|A \cup B| = |A| + |B|$
 - (b) $|A \cup B| = |A| \cdot |B|$
 - (c) $|A \cup B| = |A| |B|$
 - (d) $|A \cup B| = |A| + |B| + |A \cap B|$
- 55. Which of the following is the correct representation of $|A \cup B|$ by Principle of Inclusion and Exclusion, if $A \cap B \neq \emptyset$?
 - (a) $|A \cup B| = |A| + |B| + |A \cap B|$
 - (b) $|A \cup B| = |A| + |B| |A \cap B|$
 - (c) $|A \cup B| = |A| + |B| + |A \times B|$
 - (d) $|A \cup B| = |A| + |B| |A B|$
- 56. With reference to the Venn- diagram, what is the formula for computing $|A \cup B \cup C|$?

- (a) $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$
- (b) $|A \cup B \cup C| = |A| + |B| + |C| + |A \cap B| + |A \cap C| + |B \cap C| + |A \cap B \cap C|$
- (c) $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C|$
- (d) $|A \cup B \cup C| = |A| + |B| + |C| |A \cup B| |A \cup C| |B \cup C| + |A \cap B \cap C|$
- 57. Let $A = \{2,3,4\}, B = \{5,9,2,7\}, C = \{4\}$. Find $|A \cup B \cup C|$?
 - (a) 1
 - (b) 4
 - (c) 3
 - (d) 6
- 58. If $n \in N$, find the value of S(n, n)?
 - (a) 0
 - (b) 1
 - (c) -1
 - (d) n
- 59. If $n \in N$, find the value of S(n, n-1)?
 - (a) 0
 - (b) 1
 - (c) $\binom{n}{2}$
 - (d) $\binom{\bar{n}}{3} + 1$

				~ 4			2 ~ /	
60.	If n	\in	Ν.	find	the	value	of S(n.	. n-2)?

(a)
$$\binom{n}{3} + 3\binom{n}{4}$$

(b) $\binom{n}{1}$

(b)
$$\binom{n}{1}$$

61. For any $n, m \in N$, what is the relation between S(n, m) and F(n, m)?

(a)
$$(S(n, m) = n! F(n, m)$$

(b)
$$S(n, m) = m! F(n, m)$$

(c)
$$S(n, m) = \frac{1}{m!} F(n, m)$$

(d)
$$S(n,m) = m F(n,m)$$

62. For $n, r, k \in N$, such that $n \ge r \ge k \ge 0$ and $r \ge 1$, then D(n, r, k) =

(a)
$$D(n,r,k) = {r \choose k} \sum_{i=0}^{r-k} (-1)^i {r-k \choose i} (n-k-i)!$$

(b)
$$D(n,r,k) = \frac{\binom{r}{k}}{(n-r)!} \sum_{i=0}^{r-k} (-1)^i \binom{r-k}{i} (n-k-i)!$$

(c)
$$D(n,r,k) = \frac{\binom{r}{k}}{(n-r)!} \sum_{i=0}^{r-k} \binom{r-k}{i} (n-k-i)!$$

(d)
$$D(n,r,k) = \sum_{i=0}^{r-k} (-1)^i {r-k \choose i} (n-k-i)!$$

63.
$$\lim_{n \to \infty} \frac{D_n}{n!} = ----$$
(a) e

(c)
$$e^{-1}$$

(a)
$$D_n = \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} \dots \frac{(-1)^n}{n!}\right]$$

(b)
$$D_n = n! [1 - 1! + 2! - 3! \dots (-1)^n n!]$$

(d)
$$D_n = n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} \dots \frac{(-1)^n}{n!} \right]$$

65. Let
$$S = \{1, 2, \dots 500\}$$
. Find the number of integers in S which are divisible by 2,3 or 5.

- (a) 300
- (b) 324
- (c) 366
- (d) 425

66. Let
$$A = \{1,2,3,4,5\}$$
 and $B = \{2,4,6,8,10,12\}$. Find $|A \cup B|$.

- (a) 5
- (b) 9
- (c) 10
- (d) 7

67. Which of the following represents the correct formula for
$$|A \cup B \cup C|$$
, if A, B, C are disjoint sets?

(a)
$$|A \cup B \cup C| = |A| + |B| + |C|$$

(b)
$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cup B| - |A \cup C| - |B \cup C| + |A \cap B \cap C|$$

(c)
$$|A \cup B \cup C| = 2[|A| + |B| + |C|]$$

(d)
$$|A \cup B \cup C| = |A| \cdot |B| \cdot |C|$$

68. Which principle states that "For any q finite sets
$$A_1, A_2, ... A_q, q \ge 2$$
,

- (a) Pigeon hole principle
- (b) Principle of injection and surjection
- (c) Principle of inclusion and exclusion
- (d) None of these
- 69. Find the value of D(4,3,3)?
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3
- 70. Find the value of D(4,3,2)?
 - (a) 2
 - (b) 1
 - (c) -1
 - (d) 3
- 71. Find the value of D(4,3,0)?
 - (a) 9
 - (b) 10
 - (c) 11
 - (d) 2
- 72. For $1 \le m \le q$, let $w(P_{i_1}, P_{i_2}, \dots P_{i_m})$ denote the number of elements of, an n-element universal set, S that posses the properties $P_{i_1}, P_{i_2}, \dots P_{i_m}$ and let $w(m) = \sum w(P_{i_1}, P_{i_2}, \dots P_{i_m})$, where the summation is taken over all m-combinations $(i_1, i_2, \dots i_m)$ of $\{1, 2, \dots q\}$, then $w(0) = \dots$
 - (a) 0
 - (b) 1
 - (c) n
 - (d) $\binom{n}{a}$
- 73. Let $A = \{2,6,7,11,19,21,31,32,34\}$ and $B = \{0,1,3,8,13,17\}$. Find $|A \cup B|$.
 - (a) 14
 - (b) 13
 - (c) 15
 - (d) 16
- 74. Let |A| = 36, |B| = 24, |C| = 12 and $|A| \cap |B| = |A| \cap |C| = |B| \cap |C| = |A| \cap |B| \cap |C| = |\emptyset|$. Find $|A| \cup |B| \cup |C|$?
 - (a) 50
 - (b) 24
 - (c) 72
 - (d) 12
- 75. For $n, m \in N$, $\sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)^n = -----$
 - (a) 0
 - (b) n!
 - (c) (n-1)!
 - (d) $\binom{n}{2}$

76. What is the generating function of the sequence $\binom{n}{0}$, $\binom{n}{1}$,, $\binom{n}{n}$, 0, 0, 0,
(a) $(1+x)^n$
(b) $(1-x)^2$
(c) $(1-x)^{-2}$
(d) $(1+x)^{-n}$
77. If the recurrence relation of the Tower of Hanoi problem with n discs is $a_n = 2a_{n-1} + 1$, where $a_1=1$ then what is the value of a_6 .
(a) 127
(b) 63
(c) 31
(d) 32
78. Let A(x) be the generating function for the sequence (a_r) . What is the generating function for the sequence (c_r) , where $c_r = a_0 + a_1 + a_2 + \cdots + a_r$, for all r.
(a) A'(x)
(b) x A'(x)
$(c)\frac{A(x)}{1-x}$
(d) (1-x) A(x)
79. What is the coefficient of x^{22} in the expansion $(x^3 + x^4 + x^5 + \cdots)^6$
(a) 125
(b) 126
(c) 127
(d) 128
80. The number of partitions of r into distinct parts is
(a) Equal to the number of partitions of r into even parts
(b) Equal to the number of partitions of r into odd parts
(c) Greater than the number of partitions of r into even parts
(d) Greater than the number of partitions of r into even parts
81. What is the generating function of the sequence $(1, 2, 3,)$
(a) $(1+x)^n$
(b) $(1-x)^2$
(c) $(1-x)^{-2}$
(d) $(1+x)^{-n}$

- 82. Let a_r be the number of ways of distributing r identical objects into n distinct boxes. What is the generating function for (a_r) .
 - (a) $(1 x)^n$
 - (b) $(1+x)^2$
 - (c) $(1+x)^{-2}$
 - (d) $(1-x)^{-n}$
- 83. What is the solution of the recurrence relation $a_n = 2a_{n-1} + 1$, where $a_1 = 1$.
 - (a) $a_n = 2^n 1$
 - (b) $a_n = 2^{2n} 1$
 - (c) $a_n = 2^{-n} + 1$
 - (d) $a_n = 2^{-n} + 1$
- 84. Let A(x) be the generating function for the sequence (a_r) . What is the generating function for the sequence (c_r) , where $c_0 = a_0$, $c_r = a_r a_{r-1}$, for all $r \ge 1$.
 - (a) A'(x)
 - (b) x A'(x)
 - (c) $\frac{A(x)}{1-x}$
 - (d) (1-x) A(x)
- 85. What is the generating function of the sequence $1, k, k^2, ...$, where k is an arbitrary constant.
 - (a) $(1 kx)^{-1}$
 - (b) $(1 + kx)^2$
 - (c) $(1 kx)^{-2}$
 - (d) $(1 kx)^n$
- 86. The transpose of the Ferrers diagram F is
 - (a) A Ferrers diagram whose rows are the columns of F
 - (b) Not a Ferrers diagram
 - (c) A Ferrers diagram whose rows and columns are same as F
 - (d) A Ferrers diagram whose number of rows and columns are equal
- 87. What is the exponential generating function for (0!, 1!, 2!, ..., r!, ...)
 - (a) $\sum_{r=0}^{\infty} r! \frac{x^r}{r!}$
 - (b) $\sum_{r=0}^{\infty} \frac{x^r}{r!}$
 - (c) $\sum_{r=0}^{\infty} r! \frac{(kx)^r}{r!}$
 - (d) $\sum_{r=0}^{\infty} (kr)! \frac{x^r}{r!}$

88. Let A(x) be the generating function for the sequence (a_r) . What is the generating function for the sequence (c_r) , where $c_r = ra_r$, for all r.
(a) A'(x)
(b) x A'(x)
$(c)\frac{A(x)}{1-x}$
(d) $\int_0^x A(t)$
89. Let P be the partition of the number 12 as P: $11 = 5+4+2$. What is the partition we will obtain using Ferrers diagram.

- (a) 11 = 5+2+2(b) 11 = 5+1+1+1+1
- (c) 11 = 5 + 2 + 1 + 1
- (d) 11 = 3+3+2+2+1

90. Number of distinct partitions of 5 is

- (a) 5
- (b) 6
- (c)7
- (d) 8

91. What is the generating function for the sequence b_r , where b_r denote the number of partitions of r into odd parts.

- (a) $\frac{1}{(1-x)(1-x^2)(1-x^3)...}$
- (b) $\frac{1}{(1-x^2)(1-x^4)(1-x^6)\dots}$
- (c) $\frac{1}{(1-x)(1-x^3)(1-x^5)...}$
- (d) $\frac{1}{(1-x)(1-x)^2(1-x)^3...}$

92. What is the coefficient of x^{20} in the expansion $(x^3 + x^4 + x^5 + \cdots)^3$

- (a) 76
- (b) 78
- (c)77
- (d) 80

93. In how many ways the letters of the word ROOT can be arranged?

- (a) 5
- (b) 6
- (c)7
- (d) 8

- 94. Let A(x) be the generating function for the sequence (a_r) . What is the generating function for the sequence (c_r) , where $c_r = k^r a_r$, for all r and k is a constant.
 - (a) $\int_0^x A(t)$
 - (b) A'(kx)
 - (c) $\frac{A(x)}{1-x}$
 - (d) A(kx)
- 95. Let k, $n \in \mathbb{N}$ and $k \le n$. Then the number of partitions of n into k parts is
 - (a) Equal to the number of partitions of n into parts the largest size of which is k
 - (b) Equal to the number of partitions of n into parts the smallest size of which is k
 - (c) Greater than the number of partitions of n into parts the largest size of which is k
 - (d) Greater than the number of partitions of n into parts the smallest size of which is k
- 96. What is the solution of the recurrence relation $a_n = a_{n-1} + 3 \binom{n+2}{3}$, where for $n \ge 1$
 - (a) $3 \binom{n+2}{3}$
 - (b) $3\binom{n+3}{4}$
 - (c) $3 \binom{n+1}{5}$
 - (d) $3\binom{n-2}{3}$
- 97. What is the generating function of the sequence $\binom{n-1}{0}, \binom{1+n-1}{1}, \dots, \binom{r+n-1}{r}, \dots$
 - (a) $(1 + x)^n$
 - (b) $(1 x)^n$
 - (c) $(1-x)^{-n}$
 - (d) $(1+x)^{-n}$
- 98. Let P be the partition of the number 12 as P: 12 = 4+3+3+2. What is the partition we will obtain using Ferrers diagram.
 - (a) 12 = 4+4+2+1+1
 - (b) 12 = 4+4+3+1
 - (c) 12 = 4+4+2+2
 - (d) 12 = 4+4+1+1+1+1

- 99. Let A(x) be the generating function for the sequence (a_r) . What is the generating function for the sequence (c_r) , where $c_0 = 0$, $c_r = \frac{a_{r-1}}{r}$, for all $r \ge 1$.
 - (a) $\int_0^x A(t)$
 - (b) x A'(x)
 - $(c)\frac{A(x)}{1-x}$
 - (d) (1-x) A(x)
- 100. A partition of n is equivalent to
 - (a) Distributing n identical objects into n different boxes
 - (b) Distributing n different objects into n different boxes
 - (c) Distributing n identical objects into n identical boxes
 - (d) Distributing n different objects into n identical boxes

MSc MATHEMATICS

ANSWER KEY FOR MCQ (FOR PRIVATE EXAMS)

SEM IV- ME800403 COMBINATORICS

1.	(a)

- 2. (c)
- 3. (c)
- 4. (a)
- 5. (b)
- 6. (d)
- 7. (b)
- 8. (a)
- 9. (d)
- 10.(a)
- 10.(4)
- 11.(d)
- 12.(c)
- 13.(a)
- 14.(c)
- 15.(d)
- 16.(b)
- 17.(c)
- 18.(a)
- 19.(b)
- 20.(a)
- 21.(c)
- 22.(d)
- 23.(a)
- 24.(c)
- 25.(a)
- 26.(a)
- 27.(d)
- 28.(a)
- 29.(c)
- 30.(b)
- 31.(b)
- 32.(c)
- 33.(d)
- 34.(a)

- 35.(b)
- 36.(c)
- 37.(d)
- 38.(a)
- 39.(b)
- 40.(a)
- 41.(c)
- 42.(a)
- 43.(c)
- 44.(c)
- 45.(b)
- 46.(b)
- 47.(c)
- 48.(c)
- 49.(a)
- 50.(c)
- 51.(a)
- 52.(a)
- 53.(b)
- 54.(a)
- 55.(b)
- 56.(a)
- 57.(d)
- 58.(b)
- 59.(c)
- 60.(a)
- 61.(c)
- 62.(b)
- 63.(c)
- 64.(d)
- 65.(c)
- 66.(b)
- 67.(a)
- 68.(c)

- 69.(b)
- 70.(d)
- 71.(c)
- 72.(c)
- 73.(c)
- 74.(c)
- 75.(b)
- 76.(a)
- 77.(b)
- 78.(c)
- 79.(b)
- 80.(b)
- 81.(c)
- 82.(d)
- 83.(a)
- 84.(d)
- 85.(a)
- 86.(a)
- 87.(a)
- 88.(b)
- 89.(d)
- 90.(c)
- 91.(c)
- 92.(b)
- 93.(b)
- 94.(d)
- 95.(a)
- 96.(b)
- 97.(c)
- 98.(b)
- 99.(a)
- 100.(c)