FOURTH SEMESTER M.Sc. MATHEMATICS ME800401-DIFFERENTIAL GEOMETRY MULTIPLE CHOICE QUESTIONS

- 1. The level set of the function $f(x_1, x_2) = x_1^2 + \frac{x_2^2}{4}$ at height 1 is
 - A. a circle
 - B. a pair of straight lines
 - C. a parabola
 - D. an ellipse
- 2. The graph of the function $f(x_1) = x_1^2$ is
 - A. a circle
 - B. a parabola
 - C. an ellipse
 - D. a paraboloid
- 3. Which of the following is false about a function : $\mathbb{R}^{n+1} \to \mathbb{R}$?
 - A. The level set of f at height $c \in \mathbb{R}$ is the solution set of the equation $f(x_1, x_2, ..., x_{n+1}) = c$.
 - B. The graph of f is a subset of \mathbb{R}^{n+2}
 - C. The level set of f at height $c \in \mathbb{R}$ is always non-empty
 - D. The graph of f is a level set for some function $F \colon \mathbb{R}^{n+2} \to \mathbb{R}$
- 4. The dimension of the vector space \mathbb{R}_p^{n+1} is
 - A. n+2
 - B. n+1
 - C. p(n+1)
 - D. n

5. If $\mathbf{v} = (p, v)$ and $\mathbf{w} = (p, w)$ are two vectors in \mathbb{R}_p^{n+1} , which of the following is not true?

- A. $\mathbf{v} + \mathbf{w} = (p, v + w)$
- B. $\mathbf{v} \cdot \mathbf{w} = (p, v \cdot w)$
- C. $c\mathbf{v} = (p, cv)$ where *c* is a scalar
- D. $\mathbf{v} \times \mathbf{w} = (p, v \times w)$

- 6. If $\mathbf{v} = (p, v)$ and $\mathbf{w} = (q, w)$ are two vectors in \mathbb{R}^{n+1} at points p and q respectively, then which of the following is true?
 - A. v + w = (p, v + w)
 - B. v + w = (q, v + w)
 - C. v + w = (p + q, v + w)
 - D. Not defined
- 7. The length of the vector $\mathbf{v} = (p, v)$ where p is a point in \mathbb{R}^4 and v = (-1, 2, 4, -2) is
 - A. 3
 - B. 9
 - C. 25
 - D. 5
- 8. The angle between the vectors $\mathbf{v} = (p, 1, 0)$ and $\mathbf{w} = (p, 1, 1)$ at a point p in \mathbb{R}^2 is
 - A. 0
 - B. $\frac{\pi}{2}$
 - C. $\frac{\pi}{4}$

 - D. $\frac{\pi}{6}$

9. Which of the following is not true about a parametrized curve $\alpha: I \to \mathbb{R}^{n+1}$?

- A. α is smooth
- B. *I* is an open interval in \mathbb{R}
- C. The velocity vector at time $t \in I$ of α is tangent to α at $\alpha(t)$
- D. α is always an integral curve
- 10. Let **X** be a smooth vector field defined on an open set $U \subseteq \mathbb{R}^{n+1}$ and let $p \in U$. If α is the maximal integral curve of **X** through p and β is any integral curve of **X** through p, then
 - A. $\alpha = \beta$
 - B. α is the restriction of β
 - C. β is the restriction of α
 - D. Domains of α and β are the same

11. The gradient of the function $f(x_1, x_2) = x_1 + x_2$ at (1, 0) is

- A. (1, 0, 1, 1)
- B. (1, 0, 1, 0)
- C. (1, 0, 0, 1)
- D. (1, 0, 0, 0)

12. The divergence of the vector field $\mathbf{X}(x_1, x_2) = (x_1, x_2, -x_2, x_1)$ is

- A. 0
- **B**. 1
- C. 2
- D. 4
- 13. Which of the following is not true?
 - A. Associated with each smooth function $f: U \to \mathbb{R}$ where U open in \mathbb{R}^{n+1} there is always a smooth vector field on U
 - B. The gradient of a smooth function $f: U \to \mathbb{R}$ (U open in \mathbb{R}^{n+1}) at $p \in f^{-1}(c)$ is orthogonal to all vectors tangent to $f^{-1}(c)$ at p.
 - C. The set of all vectors tangent to $f^{-1}(c)$ at a point $p \in U$ is always a proper subset of $[\nabla f(p)]^{\perp}$
 - D. At each regular point p on a level set $f^{-1}(c)$ of a smooth function f there is a welldefined tangent space

14. Let $f: U \to \mathbb{R}$ (U open in \mathbb{R}^{n+1}) be a smooth function. A point $p \in \mathbb{R}^{n+1}$ such that $\nabla f(p) \neq 0$ is called

- A. a critical point of f
- B. a regular point of f
- C. a point of inflection
- D. saddle point of f

15. If $f: U \to \mathbb{R}$ (U open in \mathbb{R}^{n+1}) is a smooth function and $\alpha: I \to \mathbb{R}^{n+1}$ is a parametrized curve, then

A.
$$\frac{d}{dt}(f \circ \alpha)(t) = \nabla f(\alpha(t)) \cdot \dot{\alpha}(t), \forall t \in I$$

B.
$$\frac{\alpha}{dt}(f \circ \alpha)(t) = \|\nabla f(\alpha(t))\|^2, \forall t \in I$$

- C. Both (A) and (B) are true
- D. None of the above

- 16. Which of the following is not true?
 - A. A parametrized curve can cross itself
 - B. An integral curve of a vector field can cross itself
 - C. At each point of a parametrized curve there is a vector tangent to the curve
 - D. An integral curve is always a parametrized curve

17. A 1-surface in \mathbb{R}^2 is called

- A. a plane curve
- B. simply a surface
- C. a line
- D. a plane
- 18. Let S be an oriented 3-surface in \mathbb{R}^4 with orientation N and let $p \in S$. An ordered orthonormal basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ for the tangent space to S at p is said to be left-handed if the determinant

$$det \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ N(p) \end{pmatrix}$$
 is

A. non-zero

- B. equal to zero
- C. positive
- D. negative

19. The surface of revolution obtained by rotating the curve $x_2 = 1$ about the x_1 axis is

- A. a plane
- B. a cylinder
- C. a sphere
- D. a parabola
- 20. A 1-plane in \mathbb{R}^2 is usually called
 - A. a plane curve
 - B. simply a surface
 - C. a plane
 - D. a line

21. The maximum and minimum values of the function $g(x_1, x_2) = x_1^2 + 2x_1x_2 + x_2^2$ on the circle

- $x_1^2 + x_2^2 = 1$ is A. 2, 0 B. $\frac{1}{2}$, 0
 - C. 2, 1
 - D. 1,0

22. The set S of all unit vectors at all points of \mathbb{R}^2 forms

- A. a 1-surface in \mathbb{R}^2
- B. a 2-surface in \mathbb{R}^3
- C. a 3-surface in \mathbb{R}^4
- D. a 4-surface in \mathbb{R}^5

23. The dimension of the tangent space at a point on an n-surface in \mathbb{R}^{n+1} is

- A. n+1
- B. n
- C. n-1
- D. 1

24. Number of orientations on a connected n-surface in \mathbb{R}^{n+1} is

- A. 0
- **B**. 1
- C. 2
- D. n

25. Let *S* be an oriented n-surface in \mathbb{R}^{n+1} with the orientation **N** and let $p \in S$. An ordered basis

 $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ for the tangent space to S at p is said to be consistent with the orientation N if the

determinant
$$det \begin{pmatrix} v_1 \\ \vdots \\ v_n \\ N(p) \end{pmatrix}$$
 is

A. non-zero

- B. equal to zero
- C. positive
- D. negative
- 26. Which of the following statement is correct?

(A) $x_1^2 + x_2^2 = 1$ is a circle in \mathbb{R}^2 (B) $x_1^2 + x_2^2 = 1$ is a cylinder in \mathbb{R}^3 (C) Both A and B (D) None of the above

- 27. The domain of a parameterized curve is
 - $(\mathbf{A})\,\mathbb{R}^n$
 - (B) \mathbb{R}^{n+1}
 - (C) An interval in \mathbb{R}
 - (D) A subset of \mathbb{R}^{n+1}
- 28. Geodesic of an n-surafce S is a parametrized curve which is always
 - (A) Parallel to S
 - (B) Orthogonal to S
 - (C) Parallel to \mathbb{R}^{n+1}
 - (D) Orthogonal to \mathbb{R}^{n+1}
- 29. Let $\alpha: I \to \mathbb{R}^{n+1}$ is a parametrized curve with constant speed, then
 - (A) $\alpha(t)$ and $\dot{\alpha}(t)$ are orthogonal
 - (B) $\alpha(t)$ and $\dot{\alpha}(t)$ are parallel
 - (C) $\dot{\alpha}(t)$ and $\ddot{\alpha}(t)$ are parallel
 - (D) $\dot{\alpha}(t)$ and $\ddot{\alpha}(t)$ are orthogonal
- 30. The equation $-x_1^2 + x_2^2 + \dots + x_{n+1}^2 = 0, x_1 > 0$ represents
 - (A) a cone
 - (B) a parabola
 - (C) a hyperbola
 - (D) a parabloid
- 31. Let S denote the cylinder $x_1^2 + x_2^2 = r^2$ of radius r > 0 in \mathbb{R}^3 . Also α is a geodesic of S then α is of the form
 - $(A)\alpha(t) = (r\cos(at+b), r\sin(at+b), ct+d)$
 - (B) $\alpha(t) = (a + r \cos t, b + r \sin t, ct + d)$
 - (C) $\dot{\alpha}(t) = (r\cos(at+b), r\sin(at+b), ct+d)$
 - (D) None of the above
- 32. A parametrized curve α in a unit sphere $x_1^2 + x_2^2 + \dots + x_{n+1}^2 = 1$ is given as $\alpha(t) = (\cos at)e_1 + (\sin at)e_2$, where $\{e_1, e_2\}$ is some orthogonal pair of unit vectors, $a \in \mathbb{R}$. Then α is
 - (A) an n + 1 sphere
 - (B) a geodesic
 - (C) maximal integral curve
 - (D) none of the above
- 33. An n-surface S in \mathbb{R}^{n+1} is said to be geodesically complete if every maximal geodesic in S has domain
 - $(A)\mathbb{R}$
 - $(\mathbf{B})\,\mathbb{R}^{n+1}$
 - (C) an interval in \mathbb{R}
 - (D) none of the above
- 34. A parametrized curve $\alpha: I \to S$ is a geodesic if
 - (A) The velocity $\dot{\alpha}(t) = 0$ for all t
 - (B) The acceleration $\ddot{\alpha}(t) = 0$ for all t
 - (C) The covariant acceleration $(\dot{\alpha})' = 0$
 - (D) None of the above
- 35. Which of the following are true bout a parallel transport $P_{\alpha}: S_p \to S_q$
 - (A) P_{α} is a linear map.
 - (B) P_{α} is one-one and onto

- (C) $P_{\alpha}(v)$. $P_{\alpha}(w) = v \cdot w$ for all v, w in S_p
- (D) All of the above
- 36. For each n-surface S, there exists a Gauss map, which is of the form
 - $(\mathbf{A})N:S\to S^n$
 - (B) $N: R \to \mathbb{R}^n$
 - $(\mathbf{C})\,N{:}\,S^n\to\mathbb{R}^n$
 - (D) None of the above
- 37. Let *S* be a compact, connected and oriented n-surface in \mathbb{R}^{n+1} exhibited as a level set $f^{-1}(c)$ of a smooth function $f: \mathbb{R}^{n+1} \to \mathbb{R}$ with $\nabla f(p) \neq 0$ for all $p \in S$, then
 - (A) the Gauss map is one-one
 - (B) the Gauss map is onto
 - (C) the Gauss map is a bijection
 - (D) none of the above
- 38. The image of Gauss map $N(S) = \{q \in S^n : q = N(p) \text{ for some } p \in S\}$ is called ______ image of oriented surface
 - (A) parabolic image
 - (B) spherical image
 - (C) circular image
 - (D) none of the above
- 39. The equation $-x_1 + x_2^2 + \dots + x_{n+1}^2 = 0$ represents a
 - (A) parabola
 - (B) parabloid
 - (C) sphere
 - (D) cone
- 40. The acceleration of the geodesic is
 - (A) keeping it in surface
 - (B) tangential to surface
 - (C) orthogonal to surface
 - (D) none of the above
- 41. If an n-surface S contains a straight-line segment $\alpha(t) = p + tv, t \in I$, then it is a
 - (A) maximal integral curve in \mathbb{R}
 - (B) Geodesic in S
 - (C) tangential vector filed in S
 - (D) none of the above
- 42. Let *X* and *Y* be smooth vector fields along the parametrized curve $\alpha: I \to \mathbb{R}^{n+1}$ and let $f: I \to \mathbb{R}$ be a smooth function along α then
 - $(A) (X + Y) = \dot{\overline{X}} + \dot{\overline{Y}}$ $(B) (f'(X)) = f'X + f\dot{X}$ $(C) (X, Y)' = \dot{X} + X + \dot{Y}$
 - (D) All of the above
- 43. What is the acceleration of the parametrization $\alpha(t) = (t, t^2)$
 - (A) $(\alpha(t); 0, 2)$
 - (B) $(\dot{\alpha}(t); 0, 2)$
 - (C) $(\alpha(t); 1, 2)$
 - (D) $(\dot{\alpha}(t); 1, 2)$
- 44. Find the velocity of $\alpha(t) = (\cos t, \sin t)$ (A) $(\alpha(t); -\sin t, \cos t)$

- (B) $(\alpha(t); -\cos t, \sin t)$ (C) $(\dot{\alpha}(t); -\sin t, \cos t)$ (D) $(\dot{\alpha}(t); -\cos t, \sin t)$ 45. Find the speed of $\alpha(t) = (\cos 3t, \sin 3t)$ (A)-3 (B) 0
 - (C) 3
 - (D) None of the above
- 46. Consider the cylinder $x_2^2 + \dots + x_{n+1}^2 = 1$. Define $f: \mathbb{R}^{n+1} \to \mathbb{R}$ by $f(x_1, \dots, x_{n+1}) = x_2^2 + \dots + x_{n+1}^2$. Find $\|\nabla f(p)\|$
 - (A)0
 - (B) 1
 - (C) 2
 - (D)3
- 47. Which of the following is/are the property/properties of Levi-Civita parallelism
 - (A) If X and Y are parallel along α , then the angle $\cos^{-1}(X, Y/||X||, ||Y||)$ is constant along α
 - (B) If X and Y are parallel along α , then so are X + Y and cX for all $c \in \mathbb{R}$
 - (C) The velocity vector field along a parametrized curve α in S is parallel if and only if α is a geodesic
 - (D) All of the above
- 48. Let *S* be an n-surface in \mathbb{R}^{n+1} . Let $\alpha: I \to S$ be a parametrized curve and let *X* and *Y* be vector fields tangent to *S* along α . Then
 - (A)(X + Y)' = X' + Y'
 - (B) (fX)' = f'X + fX'
 - (C) both A and B

(D) none of the above

49. The following figure represents

- (A) Levi-Civita parallel vector field
- (B) Eucledian parallel vector field
- (C) both (A) and (B)
- (D) none of the above
- 50. Meridians and Parallels always meet
 - (A) Parallely
 - (B) Orthogonally
 - (C) Tangentially
 - (D) They never meet
- 51. The Weingarten map is also known as
 - (A) Surface homomorphism
 - (B) Shape operator
 - (C) Tangent space homomorphism
 - (D) Euclidian homomorphism

52. The Weingarten map is given by for $v = \dot{\alpha}(t_0)$. $L_p(v) = \cdots$

(A) (N o $\alpha)'(t_0)$

(B) –(N o α)'(t_0)

(C) $(N \circ \alpha)(t_0)$

(D) $-(N \circ \alpha)(t_0)$

53. For every parametrized curve $\alpha: I \to S$ with $\alpha'(t_0) = \mathbf{v}, L_p(\mathbf{v}) \cdot \mathbf{v}$ is -----

- (A) The normal component of acceleration
- (B) The tangential component of acceleration
- (C) the absolute value or acceleration
- (D) None of these
- 54. Let S be a sphere of radius r, oriented by its outward normal and let α be a unit speed parametrized curve n S. Then the normal component of acceleration of α is given by
- (A) 0
- (B) 1 (C) $\frac{1}{r}$
- (D) $-\frac{1}{r}$

55. Let $f: \mathbb{R}^2 \to \mathbb{R}$, given by $f(x, y) = 2x^2 + 3y^2$, p = (1, 0), $\mathbf{v} = (p, 2, 1)$. Then $\nabla_{\mathbf{v}} f = \dots$ (A) 14

- (B) 10
- (C) 8
- (D) 6

56. Let $f: \mathbb{R}^2 \to \mathbb{R}$, given by $f(x, y) = x^2 - y^2$, p = (1, 1), $\mathbf{v} = (p, \cos \theta, \sin \theta)$. Then $\nabla_{\mathbf{v}} f = \dots$ (A) $2(\cos\theta - \sin\theta)$

- (B) $2(\cos\theta + \sin\theta)$
- (C) $\sin 2\theta$
- (D) $\cos 2\theta$

57. Which of the following is true?

 $(i) \nabla_{v} (X + Y) = \nabla_{v} X + \nabla_{v} Y \quad (ii) \nabla_{v} (f X) = (\nabla_{v} f) X(p) + f(p) (\nabla_{v} X)$

- (A) Only (*i*) is true
- (B) Only (*ii*) is true
- (C) Both are false
- (D) Both are true

58. Curvature of straight line is

(A) 0 (B) 1

- (C) -1
- (D) None

59. If two curves have same curvature then, these curves are

- (A) Equal to each other
- (B) Perpendicular to each other
- (C) Congruent
- (D) None

60. The magnitude of curvature is

- (A) T
- (B) K
- (C) C
- (D) None
- 61. The curvature K is always
 - (A) Zero
 - (B) Positive
 - (C) Negative
 - (D) None
- 62. Let *S* be a plane curve, $p \in S$ such that the radius of curvature at *p* is non zero, and let *C* be the circle of curvature at *p*. Then which of the following statement is true?

 $(i)S_p = C_p$ (*ii*) orientation normals of S and C at p are equal

- (A) Only (i) is true
- (B) Only (ii) is true
- (C) Both are false
- (D) Both are true
- 63. Let (t) = ((t), (t)) be a local parametrization of a plane curve *C*. Then the curvature of *C* at (t) is given by

(A)
$$\frac{x'y'' - x''y'}{(x'^2 + y'^2)^{\frac{3}{2}}}$$

(B)
$$\frac{x'y'' + x''y'}{(x'^2 - y'^2)^{\frac{3}{2}}}$$

(C)
$$\frac{x'y'' - x''y'}{(x'^2 + y'^2)^{\frac{2}{3}}}$$

(D)
$$\frac{x'y'' + x''y'}{(x'^2 - y'^2)^{\frac{2}{3}}}$$

- 64. A necessary and sufficient condition for the existence of a global parametrization for a plane curve C is
 - (A) C is compact
 - (B) C is connected
 - (C) C is connected and compact
- (D) None of these
- 65. A necessary condition for a unit speed parametrized curve α to be a global parametrization of aconnected plane curve *C* is
- (A) α is injective
- (B) α is periodic
- (C) α is either injective or periodic
- (D) α is both injective and periodic
- 66. Let ω be an exact 1-form. Then the integral of ω over a compact connected oriented plane curve is
- (A) Always zero
- (B) Always one
- (C) ω(0)
- (D) Not defined

67. Let μ be the 1-form on ℝ² - {0} defined by μ = - x₂/x<sub>1²+x_{2²</sup>} dx₁ + x<sub>1²+x_{2²</sup>} dx₂ and let *C* denote the ellipse x_{1²/a²} + x_{2²/b²} = 1, oriented by its inward normal. Then the value of ∫_C μ is
(A) 0
(B) 2π
(C) π
(D) -2π
68. Let n be the 1-form on ℝ² - {0} defined by n = - x₂/x₂ dx₁ + x₁/x₁ dx₂. Then
</sub></sub>

68. Let η be the 1-form on R² - {0} defined by η = - x₂/(x₁²+x₂²) dx₁ + x₁/(x₁²+x₂²) dx₂. Then for α: [a, b] → R² - {0} any closed piecewise smooth parametrized curve in R² - {0}, ∫_α η is
(A) 0
(B) 2πk, for some integer k
(C) π

(D) $-2\pi k$, for some integer k

69. A parametrized curve $\alpha: [a, b] \to \mathbb{R}^{n+1}$ is said to be closed if (A) $\alpha(a) = \alpha(b)$ (B) $\alpha(a) \neq \alpha(b)$ (C) $\alpha(a) = \alpha(b) = 0$ (D) None

70. If $\beta: \tilde{I} \to \mathbb{R}^{n+1}$ be a reparameterization of α , then which of the following is true?

(*i*) $I(\alpha) = I(\beta)$ (*ii*) $I(\alpha) \neq I(\beta)$

- (A) Only (i) is true
- (B) Only (ii) is true
- (C) Both are false
- (D) Both are true

71. Find the length of the parametrized curve $\alpha : I \to \mathbb{R}^4$ given by $\alpha(t) = (cost, sint, cost, sint)$, where $I = [0, 2\pi]$

- (A) $2\sqrt{2}\pi$
- **(B)** 0
- (C) $-2\sqrt{2}\pi$
- (D) 2π

72. Find the length of the parametrized curve $\alpha : I \to \mathbb{R}^3$, $\alpha(t) = (\cos 3t, \sin 3t, 4t)$, I = [-1, 1](A) 5

- (B) 0
- (C) 10
- (D) 20
- 73. Let f and g be smooth functions on the open set $U \subset \mathbb{R}^{n+1}$, then which of the following is true?
 - (i) d(f+g) = df + dg (ii) d(fg) = gdf + fdg
 - (A) Only (i) is true
 - (B) Only (*ii*) is true
 - (C) Both are false
 - (D) Both are true

74. Compute
$$\int_{\alpha} x_2 dx_1 - x_1 dx_2$$
, where $\alpha(t) = (2 \cos t, 2 \sin t), 0 \le t \le 2\pi$

(A) 2π
(B) 8π
(C) 4π
(D) π

75. Compute $\int_C -x_2 dx_1 + x_1 dx_2$, where *C* is the ellipse $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$ oriented by its inward normal (A) $2\pi ab$ (B) πab (C) 0 (D) $4\pi ab$

76. For n = 1, $L_p(\mathbf{v})$ is

(A) = $\kappa(p) \mathbf{v}$ (B) $\neq \kappa(p) \mathbf{v}$ (C) > $\kappa(p) \mathbf{v}$ (D) < $\kappa(p) \mathbf{v}$

77. When $\|\mathbf{v}\| = 1$, $k(\mathbf{v}) = L_p(\mathbf{v}) \cdot \mathbf{v}$ is called

(A) the Gaussian curvature at p (B) the normal curvature at p

(C) the principal curvature at p (D) the mean curvature at p

78. The normal section $\mathcal{N}(\mathbf{v})$ is just a copy of

(A) \mathbb{R}^{n+1} (B) \mathbb{R}^n (C) \mathbb{R}^2 (D) \mathbb{R}

79. Eigen values of the Weingarten map L_p are called

- (A) Gaussian curvatures at p (B) principal curvatures at p
- (C) normal curvatures at p (D) mean curvatures at p

80. Let *S* denote the hyperboloid $-x_1^2 + x_2^2 + x_3^2 = 1$ in \mathbb{R}^3 , oriented by its outward normal. Let p = (0,0,1). Then the principal curvatures of *S* at *p* are

(A) -1, 0, 1 (B) -1, 0 (C) 0, 1 (D) -1, 1

- 81. If $\{k_1(p), k_2(p), ..., k_n(p)\}$ are principal curvatures with corresponding orthogonal principal curvature directions $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ at a point p of an oriented n-surface S in \mathbb{R}^{n+1} , then the normal curvature $k(\mathbf{v})$ for $\mathbf{v} \in S_p$ is given by
- (A) $\sum_{i=1}^{n} k_i(p) (\mathbf{v} \cdot \mathbf{v}_i)$ (B) $\sum_{i=1}^{n} k_i(p) (\mathbf{v} \cdot \mathbf{v}_i)^2$
- (C) $\sum_{i=1}^{n} k_i(p) (\mathbf{v} \cdot \mathbf{v}_i)^n$ (D) $\sum_{i=1}^{n} k_i(p) (\mathbf{v} \cdot \mathbf{v}_i)^{n+1}$

- 82. Let {k₁(p), k₂(p), ..., k_n(p)} are principal curvatures with corresponding orthogonal principal curvature directions {v₁, v₂, ..., v_n} at a point p of an oriented n-surface S in Rⁿ⁺¹. For v ∈ S_p and for i = 1,2, ..., n, let θ_i be the angle between v and v_i. Then the normal curvature k(v) is given by
 - (A) $\sum_{i=1}^{n} k_i(p) \cos \theta_i$ (B) $\sum_{i=1}^{n} k_i(p) \sin \theta_i$ (C) $\sum_{i=1}^{n} k_i(p) \cos^2 \theta_i$ (D) $\sum_{i=1}^{n} k_i(p) \sin^2 \theta_i$

83. The quadratic form associated with a self adjoint linear transformation L is defined by

(A)
$$L(v) \cdot v$$
 (B) $[L(v) \cdot v]^2$ (C) $L(v) + v$ (D) $L(v) - v$

- 84. First fundamental form is always
 - (A) indefinite(B) semi-definite(C) positive definite(D) negative definite

85. Which formula is used to recover the self adjoint linear transformation L from the quadratic form Q

(A) $L(v) \cdot w = \frac{1}{2} [Q(v+w) + Q(v) + Q(w)]$ (B) $L(v) \cdot w = \frac{1}{2} [Q(v+w) - Q(v) - Q(v)]$

Q(w)]

(C)
$$L(v) \cdot w = \frac{1}{2} [Q(v+w) + Q(v) - Q(w)]$$
 (D) $L(v) \cdot w = \frac{1}{2} [Q(v+w) - Q(v) + Q(v)]$

Q(w)]

86. When the quadratic form Q is such that $Q(v) \ge 0 \forall v$, it is said to be

(A) positive semi-definite(B) indefinite(C) positive definite(D) negative definite

87. When the quadratic form Q is such that $Q(v) \leq 0 \forall v$, it is said to be

- (A) positive definite (B) indefinite
- (C) negative semi-definite (D) negative definite

88. When all the principal curvatures at p are positive, then the second fundamental form at p is

(A) positive semi-definite	(B) negative semi-definite
----------------------------	----------------------------

- (C) positive definite (D) negative definite
- 89. When all the principal curvatures at p are negative, then the second fundamental form at p is
- (A) positive definite (B) negative definite
- (C) positive semi-definite (D) negative semi-definite
- 90. Let $S = f^{-1}(c)$ be an *n*-surface in \mathbb{R}^{n+1} , oriented by $\nabla f / ||\nabla f||$. For $\mathbf{v} = (p, v_1, v_2, \dots, v_{n+1})$, a vector tangent to S at $p \in S$, the second fundamental form of S at p on \mathbf{v} is given by

(A)
$$\frac{1}{\|\nabla f(p)\|^2} \sum_{i,j=1}^{n+1} \frac{\partial^2 f}{\partial x_i \partial x_j}(p) v_i v_j$$
(B)
$$\frac{1}{\|\nabla f(p)\|} \sum_{i,j=1}^{n+1} \frac{\partial^2 f}{\partial x_i \partial x_j}(p) v_i v_j$$
(C)
$$\frac{-1}{\|\nabla f(p)\|} \sum_{i,j=1}^{n+1} \frac{\partial^2 f}{\partial x_i \partial x_j}(p) v_i v_j$$
(D)
$$\frac{1}{\|\nabla f(p)\|^2} \sum_{i,j=1}^{n+1} \frac{\partial^2 f}{\partial x_i \partial x_j}(p) v_i v_j$$

- 91. The determinant of the Weingarten map L_p is called
- (A) Gauss-Kronecker curvature at p(B) principal curvature at p(C) normal curvature at p(D) mean curvature at p92. The trace of the Weingarten map L_p is called(A) normal curvature at p(B) principal curvature at p
- (C) Gauss-Kronecker curvature at p (D) mean curvature at p
- 93. Let S be an oriented n − surface in ℝⁿ⁺¹ and let p ∈ S. Let Z be any non-zero normal vector field on S such that N = Z/||Z|| and let {v₁, v₂, ..., v_n} be any basis for S_p. Then the Gauss-Kronecker curvature at p is given by

(A)
$$\mathbf{K}(p) = (-1)^n \det \begin{pmatrix} \nabla_{\mathbf{v}_1} \mathbf{Z} \\ \vdots \\ \nabla_{\mathbf{v}_n} \mathbf{Z} \\ \mathbf{Z}(p) \end{pmatrix} / \|\mathbf{Z}(p)\|^2 \det \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_n \\ \mathbf{Z}(p) \end{pmatrix}$$

(B) $\mathbf{K}(p) = (-1)^n \det \begin{pmatrix} \nabla_{\mathbf{v}_1} \mathbf{Z} \\ \vdots \\ \nabla_{\mathbf{v}_n} \mathbf{Z} \\ \mathbf{Z}(p) \end{pmatrix} / \|\mathbf{Z}(p)\|^n \det \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_n \\ \mathbf{Z}(p) \end{pmatrix}$

(C)
$$\mathbf{K}(p) = (-1)^n \det \begin{pmatrix} \vdots \\ \nabla_{\mathbf{v}_n} \mathbf{Z} \\ \mathbf{Z}(p) \end{pmatrix} / \|\mathbf{Z}(p)\| \det \begin{pmatrix} \vdots \\ \mathbf{v}_n \\ \mathbf{Z}(p) \end{pmatrix}$$

(D)
$$\mathbf{K}(p) = (-1)^n \det \begin{pmatrix} \nabla_{\mathbf{v}_1} \mathbf{Z} \\ \vdots \\ \nabla_{\mathbf{v}_n} \mathbf{Z} \\ \mathbf{Z}(p) \end{pmatrix} / \|\mathbf{Z}(p)\|^{n+1} \det \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_n \\ \mathbf{Z}(p) \end{pmatrix}$$

94. Let S be the ellipsoid $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1$ oriented by its outward normal. Then the

Gaussian curvature of S is given by

(A)
$$\frac{1}{a^2b^2c^2\left(\frac{x_1^2}{a^4} + \frac{x_2^2}{b^4} + \frac{x_3^2}{c^4}\right)^2}$$
 (B) $\frac{1}{a^2b^2c^2\left(\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2}\right)^2}$
(C) $\frac{1}{a^2b^2c^2\left(\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2}\right)^{3/2}}$ (D) $\frac{1}{a^2b^2c^2\left(\frac{x_1^2}{a^4} + \frac{x_2^2}{b^4} + \frac{x_3^2}{c^4}\right)^{3/2}}$

95. If *S* and *S'* denote the same *n*-surface in \mathbb{R}^{n+1} but with opposite orientations and if *K* and *K'* are the Gauss-Kronecker curvatures of *S* and *S'* respectively, then

(A)
$$K' = (-1)^{n+1}K$$
 (B) $K' = (-1)^n K$ (C) $K' = (-1)^{n-1}K$ (D) $K' = (-1)^{n+2}K$

- 96. Let S be a compact connected oriented *n*-surface in \mathbb{R}^{n+1} . Which of the following is a necessary and sufficient condition for the Gauss-Kronecker curvature to be non zero for all $p \in S$.
- (A) The second fundamental form is positive definite at each point.
- (B) The first fundamental form is positive definite at each point.

- (C) The second fundamental form is negative definite at each point.
- (D) The second fundamental form is definite at each point.
- 97. Which of the following is not true for a parametrized *n*-surface in \mathbb{R}^{n+k} ?
- (A) It is a smooth map (B) Its domain is an open set in \mathbb{R}^n
- (C) Its domain is a disconnected set in \mathbb{R}^n (D) It is regular
- 98. Let $\varphi: U \to \mathbb{R}^3$ be given by $\varphi(\theta, \phi) = (r \cos \theta \sin \phi, r \sin \theta \sin \phi, r \cos \phi)$ where
- $U = \{(\theta, \phi) \in \mathbb{R}^2 : 0 < \phi < \pi\}$ and r > 0. Then which of the following is true?
- (A) φ is a parametrized 2-surface
- (B) Image of φ is the 2-sphere of radius r in \mathbb{R}^3 with the north and south poles missing
- (C) φ is not one to one (D) All the above are true
- 99. Let $\alpha: I \to \mathbb{R}^2$ given by $\alpha(t) = (x(t), y(t))$ be a regular parametrized curve in \mathbb{R}^2 whose image lies above the x_1 -axis. Then the parametrized surface of revolution obtained by rotating α about the x_1 -axis is given by

(A)
$$\varphi: I \times \mathbb{R} \to \mathbb{R}^3, \varphi(t, \theta) = (x(t), y(t) \sin \theta, y(t) \cos \theta)$$

(B) $\varphi: I \times \mathbb{R} \to \mathbb{R}^3, \varphi(t, \theta) = (x(t), y(t) \cos \theta, y(t) \sin \theta)$

(C)
$$\varphi: I \to \mathbb{R}^3$$
, $\varphi(t) = (x(t), y(t) \sin t, y(t) \cos t)$

- (D) $\varphi: I \to \mathbb{R}^3$, $\varphi(t) = (x(t), y(t) \cos t, y(t) \sin t)$
- 100. Let $\varphi: U \to \mathbb{R}^4$ be given by $\varphi(\phi, \theta, \psi) =$

 $(\sin\phi\sin\theta\sin\psi,\cos\phi\sin\theta\sin\psi,\cos\theta\sin\psi,\cos\psi)$ where $U = \{(\phi,\theta,\psi):\phi\in\psi\}$

 \mathbb{R} , $0 < \theta < \pi$, $0 < \psi < \pi$ }. Then which of the following is true?

- (A) φ is smooth and U is open
- (B) φ is a parametrized 3-surface in \mathbb{R}^4
- (C) Image of φ is contained in the unit 3-sphere in \mathbb{R}^4
- (D) All the above are true

FOURTH SEMESTER M.Sc. MATHEMATICS ME800401-DIFFERENTIAL GEOMETRY MULTIPLE CHOICE QUESTIONS-ANSWER KEY

Module 1		Mod	Module 2		Module 3		Module 4	
Qn.No	Correct	Qn.N	lo Correct		Qn.No	Correct	Qn.No	Correct
	Choice		Choice			Choice		Choice
1	D	26	С		51	В	76	А
2	В	27	С		52	D	77	В
3	С	28	В		53	А	78	С
4	В	29	D		54	D	79	В
5	В	30	А		55	С	80	D
6	D	31	А		56	А	81	В
7	D	32	В		57	D	82	С
8	С	33	Α		58	А	83	А
9	D	34	С		59	С	84	С
10	С	35	D		60	В	85	В
11	А	36	Α		61	В	86	А
12	А	37	В		62	D	87	С
13	С	38	В		63	А	88	С
14	В	39	В		64	В	89	В
15	А	40	А		65	С	90	С
16	В	41	В		66	А	91	А
17	А	42	D		67	В	92	D
18	D	43	А		68	В	93	В
19	В	44	А		69	А	94	А
20	D	45	С		70	А	95	В
21	А	46	С		71	А	96	D
22	С	47	D		72	С	97	С
23	В	48	С		73	D	98	D
24	С	49	А		74	В	99	В
25	С	50	В		75	А	100	D