FOURTH SEMESTER M.Sc. MATHEMATICS
 ME800401-DIFFERENTIAL GEOMETRY
 MULTIPLE CHOICE QUESTIONS

1. The level set of the function $f\left(x_{1}, x_{2}\right)=x_{1}{ }^{2}+\frac{x_{2}{ }^{2}}{4}$ at height 1 is
A. a circle
B. a pair of straight lines
C. a parabola
D. an ellipse
2. The graph of the function $f\left(x_{1}\right)=x_{1}{ }^{2}$ is
A. a circle
B. a parabola
C. an ellipse
D. a paraboloid
3. Which of the following is false about a function : $\mathbb{R}^{n+1} \rightarrow \mathbb{R}$?
A. The level set of f at height $c \in \mathbb{R}$ is the solution set of the equation $f\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)=c$.
B. The graph of f is a subset of \mathbb{R}^{n+2}
C. The level set of f at height $c \in \mathbb{R}$ is always non-empty
D. The graph of f is a level set for some function $F: \mathbb{R}^{n+2} \rightarrow \mathbb{R}$
4. The dimension of the vector space $\mathbb{R}_{p}{ }^{n+1}$ is
A. $\mathrm{n}+2$
B. $\mathrm{n}+1$
C. $\mathrm{p}(\mathrm{n}+1)$
D. n
5. If $\mathbf{v}=(p, v)$ and $\mathbf{w}=(p, w)$ are two vectors in $\mathbb{R}_{p}{ }^{n+1}$, which of the following is not true?
A. $\mathbf{v}+\mathbf{w}=(p, v+w)$
B. $\mathbf{v} \cdot \mathbf{w}=(p, v \cdot w)$
C. $\mathbf{c v}=(p, c v)$ where c is a scalar
D. $\mathbf{v} \times \mathbf{w}=(p, v \times w)$
6. If $\mathbf{v}=(p, v)$ and $\mathbf{w}=(q, w)$ are two vectors in \mathbb{R}^{n+1} at points p and q respectively, then which of the following is true?
A. $\mathbf{v}+\mathbf{w}=(p, v+w)$
B. $\mathbf{v}+\mathbf{w}=(q, v+w)$
C. $\mathbf{v}+\mathbf{w}=(p+q, v+w)$
D. Not defined
7. The length of the vector $\mathbf{v}=(p, v)$ where p is a point in \mathbb{R}^{4} and $v=(-1,2,4,-2)$ is
A. 3
B. 9
C. 25
D. 5
8. The angle between the vectors $\mathbf{v}=(p, 1,0)$ and $\mathbf{w}=(p, 1,1)$ at a point p in \mathbb{R}^{2} is
A. 0
B. $\frac{\pi}{2}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{6}$
9. Which of the following is not true about a parametrized curve $\alpha: I \rightarrow \mathbb{R}^{n+1}$?
A. α is smooth
B. I is an open interval in \mathbb{R}
C. The velocity vector at time $t \in I$ of α is tangent to α at $\alpha(t)$
D. α is always an integral curve
10. Let \mathbf{X} be a smooth vector field defined on an open set $U \subseteq \mathbb{R}^{n+1}$ and let $p \in U$. If α is the maximal integral curve of \mathbf{X} through p and β is any integral curve of \mathbf{X} through p, then
A. $\alpha=\beta$
B. α is the restriction of β
C. β is the restriction of α
D. Domains of α and β are the same
11. The gradient of the function $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$ at $(1,0)$ is
A. $(1,0,1,1)$
B. $(1,0,1,0)$
C. $(1,0,0,1)$
D. $(1,0,0,0)$
12. The divergence of the vector field $\mathbf{X}\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2},-x_{2}, x_{1}\right)$ is
A. 0
B. 1
C. 2
D. 4
13. Which of the following is not true?
A. Associated with each smooth function $f: U \rightarrow \mathbb{R}$ where U open in \mathbb{R}^{n+1} there is always a smooth vector field on U
B. The gradient of a smooth function $f: U \rightarrow \mathbb{R}\left(\mathrm{U}\right.$ open in $\left.\mathbb{R}^{n+1}\right)$ at $p \in f^{-1}(c)$ is orthogonal to all vectors tangent to $f^{-1}(c)$ at p.
C. The set of all vectors tangent to $f^{-1}(c)$ at a point $p \in U$ is always a proper subset of $[\nabla f(p)]^{\perp}$
D. At each regular point p on a level set $f^{-1}(c)$ of a smooth function f there is a welldefined tangent space
14. Let $f: U \rightarrow \mathbb{R}$ (U open in \mathbb{R}^{n+1}) be a smooth function. A point $p \in \mathbb{R}^{n+1}$ such that $\nabla f(p) \neq 0$ is called
A. a critical point of f
B. a regular point of f
C. a point of inflection
D. saddle point of f
15. If $f: U \rightarrow \mathbb{R}\left(\mathrm{U}\right.$ open in $\left.\mathbb{R}^{n+1}\right)$ is a smooth function and $\alpha: I \rightarrow \mathbb{R}^{n+1}$ is a parametrized curve, then
A. $\frac{d}{d t}(f \circ \alpha)(t)=\nabla f(\alpha(t)) \cdot \dot{\alpha}(t), \forall t \in I$
B. $\frac{d}{d t}(f \circ \alpha)(t)=\|\nabla f(\alpha(t))\|^{2}, \forall t \in I$
C. Both (A) and (B) are true
D. None of the above
16. Which of the following is not true?
A. A parametrized curve can cross itself
B. An integral curve of a vector field can cross itself
C. At each point of a parametrized curve there is a vector tangent to the curve
D. An integral curve is always a parametrized curve
17. A 1 -surface in \mathbb{R}^{2} is called
A. a plane curve
B. simply a surface
C. a line
D. a plane
18. Let S be an oriented 3 -surface in \mathbb{R}^{4} with orientation \mathbf{N} and let $p \in S$. An ordered orthonormal basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ for the tangent space to S at p is said to be left-handed if the determinant $\operatorname{det}\left(\begin{array}{c}e_{1} \\ e_{2} \\ e_{3} \\ N(p)\end{array}\right)$ is
A. non-zero
B. equal to zero
C. positive
D. negative
19. The surface of revolution obtained by rotating the curve $x_{2}=1$ about the x_{1} axis is
A. a plane
B. a cylinder
C. a sphere
D. a parabola
20. A 1 -plane in \mathbb{R}^{2} is usually called
A. a plane curve
B. simply a surface
C. a plane
D. a line
21. The maximum and minimum values of the function $g\left(x_{1}, x_{2}\right)=x_{1}{ }^{2}+2 x_{1} x_{2}+x_{2}{ }^{2}$ on the circle $x_{1}{ }^{2}+x_{2}{ }^{2}=1$ is
A. 2,0
B. $\frac{1}{2}, 0$
C. 2,1
D. 1,0
22. The set S of all unit vectors at all points of \mathbb{R}^{2} forms
A. a 1-surface in \mathbb{R}^{2}
B. a 2 -surface in \mathbb{R}^{3}
C. a 3-surface in \mathbb{R}^{4}
D. a 4-surface in \mathbb{R}^{5}
23. The dimension of the tangent space at a point on an n-surface in \mathbb{R}^{n+1} is
A. $n+1$
B. n
C. $\mathrm{n}-1$
D. 1
24. Number of orientations on a connected n-surface in \mathbb{R}^{n+1} is
A. 0
B. 1
C. 2
D. n
25. Let S be an oriented n-surface in \mathbb{R}^{n+1} with the orientation \mathbf{N} and let $p \in S$. An ordered basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ for the tangent space to S at p is said to be consistent with the orientation \mathbf{N} if the determinant $\operatorname{det}\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n} \\ N(p)\end{array}\right)$ is
A. non-zero
B. equal to zero
C. positive
D. negative
26. Which of the following statement is correct?
(A) $x_{1}{ }^{2}+x_{2}{ }^{2}=1$ is a circle in \mathbb{R}^{2}
(B) $x_{1}{ }^{2}+x_{2}{ }^{2}=1$ is a cylinder in \mathbb{R}^{3}
(C) Both A and B
(D) None of the above
27. The domain of a parameterized curve is
(A) \mathbb{R}^{n}
(B) \mathbb{R}^{n+1}
(C) An interval in \mathbb{R}
(D) A subset of \mathbb{R}^{n+1}
28. Geodesic of an n-surafce S is a parametrized curve which is always
(A) Parallel to S
(B) Orthogonal to S
(C) Parallel to \mathbb{R}^{n+1}
(D) Orthogonal to \mathbb{R}^{n+1}
29. Let $\alpha: I \rightarrow \mathbb{R}^{n+1}$ is a parametrized curve with constant speed, then
(A) $\alpha(t)$ and $\dot{\alpha}(t)$ are orthogonal
(B) $\alpha(t)$ and $\dot{\alpha}(t)$ are parallel
(C) $\dot{\alpha}(t)$ and $\ddot{\alpha}(t)$ are parallel
(D) $\dot{\alpha}(t)$ and $\ddot{\alpha}(t)$ are orthogonal
30. The equation $-x_{1}^{2}+x_{2}^{2}+\cdots+x_{n+1}^{2}=0, x_{1}>0$ reprresents
(A) a cone
(B) a parabola
(C) a hyperbola
(D) a parabloid
31. Let S denote the cylinder $x_{1}{ }^{2}+x_{2}{ }^{2}=r^{2}$ of radius $r>0$ in \mathbb{R}^{3}. Also α is a geodesic of S then α is of the form
(A) $\alpha(t)=(r \cos (a t+b), r \sin (a t+b), c t+d)$
(B) $\alpha(t)=(a+r \cos t, b+r \sin t, c t+d)$
(C) $\dot{\alpha}(t)=(r \cos (a t+b), r \sin (a t+b), c t+d)$
(D) None of the above
32. A parametrized curve α in a unit sphere $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n+1}^{2}=1$ is given as $\alpha(t)=$ $(\cos a t) e_{1}+(\sin a t) e_{2}$, where $\left\{e_{1}, e_{2}\right\}$ is some orthogonal pair of unit vectors, $a \in \mathbb{R}$. Then α is
(A) an $n+1$ sphere
(B) a geodesic
(C) maximal integral curve
(D) none of the above
33. An n-surface S in \mathbb{R}^{n+1} is said to be geodesically complete if every maximal geodesic in S has domain
(A) \mathbb{R}
(B) \mathbb{R}^{n+1}
(C) an interval in \mathbb{R}
(D) none of the above
34. A parametrized curve $\alpha: I \rightarrow S$ is a geodesic if
(A) The velocity $\dot{\alpha}(t)=0$ for all t
(B) The acceleration $\ddot{\alpha}(t)=0$ for all t
(C) The covariant acceleration $(\dot{\alpha})^{\prime}=0$
(D) None of the above
35. Which of the following are true bout a parallel transport $P_{\alpha}: S_{p} \rightarrow S_{q}$
(A) P_{α} is a linear map.
(B) P_{α} is one-one and onto
(C) $P_{\alpha}(v) . P_{\alpha}(w)=v . w$ for all v, w in S_{p}
(D) All of the above
36. For each n-surface S, there exists a Gauss map, which is of the form
(A) $N: S \rightarrow S^{n}$
(B) $N: R \rightarrow \mathbb{R}^{n}$
(C) $N: S^{n} \rightarrow \mathbb{R}^{n}$
(D) None of the above
37. Let S be a compact, connected and oriented n-surface in \mathbb{R}^{n+1} exhibited as a level set $f^{-1}(c)$ of a smooth function $f: R^{n+1} \rightarrow \mathbb{R}$ with $\nabla f(p) \neq 0$ for all $p \in S$, then
(A) the Gauss map is one-one
(B) the Gauss map is onto
(C) the Gauss map is a bijection
(D) none of the above
38. The image of Gauss map $N(S)=\left\{q \in S^{n}: q=N(p)\right.$ for some $\left.p \in S\right\}$ is called \qquad image of oriented surface
(A) parabolic image
(B) spherical image
(C) circular image
(D) none of the above
39. The equation $-x_{1}+x_{2}^{2}+\cdots+x_{n+1}^{2}=0$ represents a
(A) parabola
(B) parabloid
(C) sphere
(D) cone
40. The acceleration of the geodesic is
(A) keeping it in surface
(B) tangential to surface
(C) orthogonal to surface
(D) none of the above
41. If an n-surface S contains a straight-line segment $\alpha(t)=p+t v, t \in I$, then it is a
(A) maximal integral curve in \mathbb{R}
(B) Geodesic in S
(C) tangential vector filed in S
(D) none of the above
42. Let X and Y be smooth vector fields along the parametrized curve $\alpha: I \rightarrow \mathbb{R}^{n+1}$ and let $f: I \rightarrow \mathbb{R}$ be a smooth function along α then
(A) $(X \dot{+} Y)=\dot{\bar{X}}+\dot{\bar{Y}}$
(B) $\left(f^{\prime}(X)\right)=f^{\prime} X+f \dot{X}$
(C) $(X . Y)^{\prime}=\dot{X} . Y+X . \dot{Y}$
(D) All of the above
43. What is the acceleration of the parametrization $\alpha(t)=\left(t, t^{2}\right)$
(A) $(\alpha(t) ; 0,2)$
(B) $(\dot{\alpha}(t) ; 0,2)$
(C) $(\alpha(t) ; 1,2)$
(D) $(\dot{\alpha}(t) ; 1,2)$
44. Find the velocity of $\alpha(t)=(\cos t, \sin t)$
(A) $(\alpha(t) ;-\sin t, \cos t)$
(B) $(\alpha(t) ;-\cos t, \sin t)$
(C) $(\dot{\alpha}(t) ;-\sin t, \cos t)$
(D) $(\dot{\alpha}(t) ;-\cos t, \sin t)$
45. Find the speed of $\alpha(t)=(\cos 3 t, \sin 3 t)$
(A) -3
(B) 0
(C) 3
(D) None of the above
46. Consider the cylinder $x_{2}^{2}+\cdots+x_{n+1}^{2}=1$. Define $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ by $f\left(x_{1}, \ldots, x_{n+1}\right)=x_{2}^{2}+\cdots+$ x_{n+1}^{2}. Find $\|\nabla f(p)\|$
(A) 0
(B) 1
(C) 2
(D) 3
47. Which of the following is/are the property/properties of Levi-Civita parallelism
(A) If X and Y are parallel along α, then the angle $\cos ^{-1}(X . Y /\|X\| .\|Y\|)$ is constant along α
(B) If X and Y are parallel along α, then so are $X+Y$ and $c X$ for all $c \in \mathbb{R}$
(C) The velocity vector field along a parametrized curve α in S is parallel if and only if α is a geodesic
(D) All of the above
48. Let S be an n-surface in \mathbb{R}^{n+1}. Let $\alpha: I \rightarrow S$ be a parametrized curve and let X and Y be vector fields tangent to S along α. Then
(A) $(X+Y)^{\prime}=X^{\prime}+Y^{\prime}$
(B) $(f X)^{\prime}=f^{\prime} X+f X^{\prime}$
(C) both A and B
(D) none of the above
49. The following figure represents

(A) Levi-Civita parallel vector field
(B) Eucledian parallel vector field
(C) both (A) and (B)
(D) none of the above
50. Meridians and Parallels always meet
(A) Parallely
(B) Orthogonally
(C) Tangentially
(D) They never meet
51. The Weingarten map is also known as \qquad
(A) Surface homomorphism
(B) Shape operator
(C) Tangent space homomorphism
(D) Euclidian homomorphism
52. The Weingarten map is given by for $v=\dot{\alpha}\left(t_{0}\right) . L_{p}(\boldsymbol{v})=\cdots$
(A) $(\mathrm{N} \text { o } \alpha)^{\prime}\left(t_{0}\right)$
(B) $-(\mathrm{Noo} \alpha)^{\prime}\left(t_{0}\right)$
(C) $\left(\mathrm{No}^{\circ} \alpha\right)\left(t_{0}\right)$
(D) $-\left(\mathrm{No}^{\circ} \quad \alpha\right)\left(t_{0}\right)$
53. For every parametrized curve $\alpha: I \rightarrow S$ with $\alpha^{*}\left(t_{0}\right)=\mathbf{v}, L_{p}(\mathbf{v}) \cdot \mathbf{v}$ is -----
(A) The normal component of acceleration
(B) The tangential component of acceleration
(C) the absolute value or acceleration
(D) None of these
54. Let S be a sphere of radius r, oriented by its outward normal and let α be a unit speed parametrized curveon S. Then the normal component of acceleration of α is given by
(A) 0
(B) 1
(C) $\frac{1}{r}$
(D) $-\frac{1}{r}$
55. Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$, given by $f(x, y)=2 x^{2}+3 y^{2}, p=(1,0), \mathbf{v}=(p, 2,1)$. Then $\nabla_{\mathbf{v}} f=$. \qquad
(A) 14
(B) 10
(C) 8
(D) 6
56. Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$, given by $f(x, y)=x^{2}-y^{2}, p=(1,1), \mathbf{v}=(p, \cos \theta, \sin \theta)$. Then $\nabla_{\mathbf{v}} f=\ldots \ldots$
(A) $2(\cos \theta-\sin \theta)$
(B) $2(\cos \theta+\sin \theta)$
(C) $\sin 2 \theta$
(D) $\cos 2 \theta$
57. Which of the following is true?
(i) $\nabla_{v}(\boldsymbol{X}+\boldsymbol{Y})=\nabla_{v} \boldsymbol{X}+\nabla_{v} \boldsymbol{Y}$
(ii) $\nabla_{v}(f \boldsymbol{X})=\left(\nabla_{v} f\right) \boldsymbol{X}(p)+f(p)\left(\nabla_{v} \boldsymbol{X}\right)$
(A) Only (i) is true
(B) Only (ii) is true
(C) Both are false
(D) Both are true
58. Curvature of straight line is
(A) 0
(B) 1
(C) -1
(D) None
59. If two curves have same curvature then, these curves are
(A) Equal to each other
(B) Perpendicular to each other
(C) Congruent
(D) None
60. The magnitude of curvature is
(A) T
(B) K
(C) C
(D) None
61. The curvature K is always
(A) Zero
(B) Positive
(C) Negative
(D) None
62. Let S be a plane curve, $p \in S$ such that the radius of curvature at p is non zero, and let C be the circle of curvature at p. Then which of the following statement is true?
(i) $S_{p}=C_{p}$ (ii) orientation normals of S and C at p are equal
(A) Only (i) is true
(B) Only (ii) is true
(C) Both are false
(D) Both are true
63. Let $(t)=((t),(t))$ be a local parametrization of a plane curve C. Then the curvature of C at (t) isgiven by \qquad
(A) $\frac{x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}}{\left(x^{\prime 2}+y^{\prime 2}\right)^{\frac{3}{2}}}$
(B) $\frac{x^{\prime} y^{\prime \prime}+x^{\prime \prime} y^{\prime}}{\left(x^{\prime 2}-y^{\prime 2}\right)^{\frac{3}{2}}}$
(C) $\frac{x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}}{\left(x^{\prime 2}+y^{\prime 2}\right)^{\frac{2}{3}}}$
(D) $\frac{x^{\prime} y^{\prime \prime}+x^{\prime \prime} y^{\prime}}{\left(x^{\prime 2}-y^{\prime 2}\right)^{\frac{2}{3}}}$
64. A necessary and sufficient condition for the existence of a global parametrization for a plane curve C is
(A) C is compact
(B) C is connected
(C) C is connected and compact
(D) None of these
65. A necessary condition for a unit speed parametrized curve α to be a global parametrization of aconnected plane curve C is
(A) α is injective
(B) α is periodic
(C) α is either injective or periodic
(D) α is both injective and periodic
66. Let ω be an exact 1 -form. Then the integral of ω over a compact connected oriented plane curve is
(A) Always zero
(B) Always one
(C) $\omega(0)$
(D) Not defined
67. Let μ be the 1 -form on $\mathbb{R}^{2}-\{0\}$ defined by $\mu=-\frac{x_{2}}{x_{1}{ }^{2}+x_{2}{ }^{2}} d x_{1}+\frac{x_{1}}{x_{1}{ }^{2}+x_{2}{ }^{2}} d x_{2}$ and let C denote the ellipse $\frac{x_{1}{ }^{2}}{a^{2}}+\frac{x_{2}{ }^{2}}{b^{2}}=1$, oriented by its inward normal. Then the value of $\int_{C} \mu$ is
(A) 0
(B) 2π
(C) π
(D) -2π
68. Let η be the 1 -form on $\mathbb{R}^{2}-\{0\}$ defined by $\eta=-\frac{x_{2}}{x_{1}{ }^{2}+x_{2}{ }^{2}} d x_{1}+\frac{x_{1}}{x_{1}{ }^{2}+x_{2}{ }^{2}} d x_{2}$. Then for $\alpha:[a, b] \rightarrow \mathbb{R}^{2}-\{0\}$ any closed piecewise smooth parametrized curve in $\mathbb{R}^{2}-$ $\{0\}, \int_{\alpha} \eta$ is
(A) 0
(B) $2 \pi k$, for some integer k
(C) π
(D) $-2 \pi k$, for some integer k
69. A parametrized curve $\alpha:[a, b] \rightarrow \mathbb{R}^{n+1}$ is said to be closed if
(A) $\alpha(a)=\alpha(b)$
(B) $\alpha(a) \neq \alpha(b)$
(C) $\alpha(a)=\alpha(b)=0$
(D) None
70. If $\beta: \tilde{I} \rightarrow \mathbb{R}^{n+1}$ be a reparameterization of α, then which of the following is true?

$$
(i) I(\alpha)=I(\beta) \quad(i i) I(\alpha) \neq I(\beta)
$$

(A) Only (i) is true
(B) Only (ii) is true
(C) Both are false
(D) Both are true
71. Find the length of the parametrized curve $\alpha: I \rightarrow \mathbb{R}^{4}$ given by $\alpha(t)=$ (cost, $\sin t, \cos t, \sin t)$, where $I=[0,2 \pi]$
(A) $2 \sqrt{2} \pi$
(B) 0
(C) $-2 \sqrt{2} \pi$
(D) 2π
72. Find the length of the parametrized curve $\alpha: I \rightarrow \mathbb{R}^{3}, \alpha(t)=(\cos 3 t, \sin 3 t, 4 t), I=$ $[-1,1]$
(A) 5
(B) 0
(C) 10
(D) 20
73. Let f and g be smooth functions on the open set $U \subset \mathbb{R}^{n+1}$, then which of the following is true?
(i) $d(f+g)=d f+d g(i i) d(f g)=g d f+f d g$
(A) Only (i) is true
(B) Only (ii) is true
(C) Both are false
(D) Both are true
74. Compute $\int_{\alpha} x_{2} d x_{1}-x_{1} d x_{2}$, where $\alpha(t)=(2 \cos t, 2 \sin t), 0 \leq t \leq 2 \pi$
(A) 2π
(B) 8π
(C) 4π
(D) π
75. Compute $\int_{C}-x_{2} d x_{1}+x_{1} d x_{2}$, where C is the ellipse $\frac{x_{1}{ }^{2}}{a^{2}}+\frac{x_{2}{ }^{2}}{b^{2}}=1$ oriented by its inward normal
(A) $2 \pi a b$
(B) $\pi a b$
(C) 0
(D) $4 \pi a b$
76. For $n=1, L_{p}(\mathbf{v})$ is \qquad
$(\mathrm{A})=\boldsymbol{\kappa}(p) \mathbf{v}$
(B) $\neq \boldsymbol{\kappa}(p) \mathbf{v}$
(C) $>\boldsymbol{\kappa}(p) \mathbf{v}$
(D) $<\boldsymbol{\kappa}(p) \mathbf{v}$
77. When $\|\mathbf{v}\|=1, k(\mathbf{v})=L_{p}(\mathbf{v}) \cdot \mathbf{v}$ is called \qquad
(A) the Gaussian curvature at p
(B) the normal curvature at p
(C) the principal curvature at p
(D) the mean curvature at p
78. The normal section $\mathcal{N}(\mathbf{v})$ is just a copy of
(A) \mathbb{R}^{n+1}
(B) \mathbb{R}^{n}
(C) \mathbb{R}^{2}
(D) \mathbb{R}
79. Eigen values of the Weingarten map L_{p} are called \qquad
(A) Gaussian curvatures at p
(B) principal curvatures at p
(C) normal curvatures at p
(D) mean curvatures at p
80. Let S denote the hyperboloid $-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$ in \mathbb{R}^{3}, oriented by its outward normal. Let $p=(0,0,1)$. Then the principal curvatures of S at p are
(A) $-1,0,1$
(B) $-1,0$
(C) 0,1
(D) $-1,1$
81. If $\left\{k_{1}(p), k_{2}(p), \ldots, k_{n}(p)\right\}$ are principal curvatures with corresponding orthogonal principal curvature directions $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ at a point p of an oriented n-surface S in \mathbb{R}^{n+1}, then the normal curvature $k(\mathbf{v})$ for $\mathbf{v} \in \mathrm{S}_{p}$ is given by
(A) $\sum_{i=1}^{n} k_{i}(p)\left(\mathbf{v} \cdot \mathbf{v}_{i}\right)$
(B) $\sum_{i=1}^{n} k_{i}(p)\left(\mathbf{v} \cdot \mathbf{v}_{i}\right)^{2}$
(C) $\sum_{i=1}^{n} k_{i}(p)\left(\mathbf{v} \cdot \mathbf{v}_{i}\right)^{n}$
(D) $\sum_{i=1}^{n} k_{i}(p)\left(\mathbf{v} \cdot \mathbf{v}_{i}\right)^{n+1}$
82. Let $\left\{k_{1}(p), k_{2}(p), \ldots, k_{n}(p)\right\}$ are principal curvatures with corresponding orthogonal principal curvature directions $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ at a point p of an oriented n-surface S in \mathbb{R}^{n+1}. For $\mathbf{v} \in S_{p}$ and for $i=1,2, \ldots, n$, let θ_{i} be the angle between \mathbf{v} and \mathbf{v}_{i}. Then the normal curvature $k(\mathbf{v})$ is given by
(A) $\sum_{i=1}^{n} k_{i}(p) \cos \theta_{i}$
(B) $\sum_{i=1}^{n} k_{i}(p) \sin \theta_{i}$
(C) $\sum_{i=1}^{n} k_{i}(p) \cos ^{2} \theta_{i}$
(D) $\sum_{i=1}^{n} k_{i}(p) \sin ^{2} \theta_{i}$
83. The quadratic form associated with a self adjoint linear transformation L is defined by
(A) $L(v) \cdot v$
(B) $[L(v) \cdot v]^{2}$
(C) $L(v)+v$
(D) $L(v)-v$
84. First fundamental form is always
(A) indefinite
(B) semi-definite
(C) positive definite
(D) negative definite
85. Which formula is used to recover the self adjoint linear transformation L from the quadratic form Q
(A) $L(v) \cdot w=\frac{1}{2}[Q(v+w)+Q(v)+Q(w)]$
(B) $L(v) \cdot w=\frac{1}{2}[Q(v+w)-Q(v)-$ $Q(w)]$
(C) $L(v) \cdot w=\frac{1}{2}[Q(v+w)+\mathcal{Q}(v)-\mathcal{Q}(w)]$
(D) $L(v) \cdot w=\frac{1}{2}[Q(v+w)-Q(v)+$ $Q(w)]$
86. When the quadratic form Q is such that $\mathcal{Q}(v) \geq 0 \forall v$, it is said to be
(A) positive semi-definite
(B) indefinite
(C) positive definite
(D) negative definite
87. When the quadratic form Q is such that $\mathcal{Q}(v) \leq 0 \forall v$, it is said to be
(A) positive definite
(B) indefinite
(C) negative semi-definite
(D) negative definite
88. When all the principal curvatures at p are positive, then the second fundamental form at p is
(A) positive semi-definite
(B) negative semi-definite
(C) positive definite
(D) negative definite
89. When all the principal curvatures at p are negative, then the second fundamental form at p is
(A) positive definite
(B) negative definite
(C) positive semi-definite
(D) negative semi-definite
90. Let $S=f^{-1}(c)$ be an n-surface in $\mathbb{R}^{\mathbf{n + 1}}$, oriented by $\nabla f /\|\nabla f\|$. For $\mathbf{v}=$ $\left(p, v_{1}, v_{2}, \ldots, v_{n+1}\right)$, a vector tangent to S at $p \in \mathrm{~S}$, the second fundamental form of S at p on \mathbf{v} is given by
(A) $\frac{1}{\|\nabla f(p)\|^{2}} \sum_{i, j=1}^{n+1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(p) v_{i} v_{j}$
(B) $\frac{1}{\|\nabla f(p)\|} \sum_{i, j=1}^{n+1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(p) v_{i} v_{j}$
(C) $\frac{-1}{\|\nabla f(p)\|} \sum_{i, j=1}^{n+1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(p) v_{i} v_{j}$
(D) $\frac{1}{\|\nabla f(p)\|^{2}} \sum_{i, j=1}^{n+1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(p) v_{i} v_{j}$
91. The determinant of the Weingarten map L_{p} is called \qquad
(A) Gauss-Kronecker curvature at p
(B) principal curvature at p
(C) normal curvature at p
(D) mean curvature at p
92. The trace of the Weingarten map L_{p} is called \qquad
(A) normal curvature at p
(B) principal curvature at p
(C) Gauss-Kronecker curvature at p
(D) mean curvature at p
93. Let S be an oriented n - surface in $\mathbb{R}^{\mathrm{n}+1}$ and let $p \in \mathrm{~S}$. Let \mathbf{Z} be any non-zero normal vector field on S such that $\mathbf{N}=\mathbf{Z} /\|\mathbf{Z}\|$ and let $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ be any basis for S_{p}. Then the Gauss-Kronecker curvature at p is given by
(A) $\boldsymbol{K}(p)=(-1)^{n} \operatorname{det}\left(\begin{array}{c}\nabla_{\mathbf{v}_{\mathbf{1}}} \mathbf{Z} \\ \vdots \\ \nabla_{\mathbf{v}_{\mathbf{n}}} \mathbf{Z} \\ \mathbf{Z}(p)\end{array}\right) /\|\mathbf{Z}(p)\|^{2} \operatorname{det}\left(\begin{array}{c}\mathbf{v}_{\mathbf{1}} \\ \vdots \\ \mathbf{v}_{\mathbf{n}} \\ \mathbf{Z}(p)\end{array}\right)$
(B) $\mathbf{K}(p)=(-1)^{n} \operatorname{det}\left(\begin{array}{c}\nabla_{\mathbf{v}_{\mathbf{1}}} \mathbf{Z} \\ \vdots \\ \nabla_{\mathbf{v}_{\mathbf{n}}} \mathbf{Z} \\ \mathbf{Z}(p)\end{array}\right) /\|\mathbf{Z}(p)\|^{n} \operatorname{det}\left(\begin{array}{c}\mathbf{v}_{\mathbf{1}} \\ \vdots \\ \mathbf{v}_{\mathbf{n}} \\ \mathbf{Z}(p)\end{array}\right)$
(C) $\mathbf{K}(p)=(-1)^{n} \operatorname{det}\left(\begin{array}{c}\nabla_{\mathbf{v}_{\mathbf{v}}} \mathbf{Z} \\ \vdots \\ \nabla_{\mathbf{v}_{\mathbf{n}}} \mathbf{Z} \\ \mathbf{Z}(p)\end{array}\right) /\|\mathbf{Z}(p)\| \operatorname{det}\left(\begin{array}{c}\mathbf{v}_{\mathbf{1}} \\ \vdots \\ \mathbf{v}_{\mathbf{n}} \\ \mathbf{Z}(p)\end{array}\right)$
(D) $\quad \mathbf{K}(p)=(-1)^{n} \operatorname{det}\left(\begin{array}{c}\nabla_{\mathbf{v}_{\mathbf{1}}} \mathbf{Z} \\ \vdots \\ \nabla_{\mathbf{V}_{\mathbf{n}}} \mathbf{Z} \\ \mathbf{Z}(p)\end{array}\right) /\|\mathbf{Z}(p)\|^{n+1} \operatorname{det}\left(\begin{array}{c}\mathbf{v}_{\mathbf{1}} \\ \vdots \\ \mathbf{v}_{\mathbf{n}} \\ \mathbf{Z}(p)\end{array}\right)$
94. Let S be the ellipsoid $\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}+\frac{x_{3}^{2}}{c^{2}}=1$ oriented by its outward normal. Then the Gaussian curvature of S is given by
(A) $\frac{1}{a^{2} b^{2} c^{2}\left(\frac{x_{1}^{2}}{a^{4}}+\frac{x_{2}^{2}}{b^{4}}+\frac{x_{3}^{2}}{c^{4}}\right)^{2}}$
(B) $\frac{1}{a^{2} b^{2} c^{2}\left(\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}+\frac{x_{3}^{2}}{c^{2}}\right)^{2}}$
(C) $\frac{1}{a^{2} b^{2} c^{2}\left(\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}+\frac{x_{3}^{2}}{c^{2}}\right)^{3 / 2}}$
(D) $\frac{1}{a^{2} b^{2} c^{2}\left(\frac{x_{1}^{2}}{a^{4}}+\frac{x_{2}^{2}}{b^{4}}+\frac{x_{3}^{2}}{c^{4}}\right)^{3 / 2}}$
95. If S and S^{\prime} denote the same n-surface in \mathbb{R}^{n+1} but with opposite orientations and if K and K^{\prime} are the Gauss-Kronecker curvatures of S and S^{\prime} respectively, then \qquad
(A) $K^{\prime}=(-1)^{n+1} K$
(B) $K^{\prime}=(-1)^{n} K$
(C) $K^{\prime}=(-1)^{n-1} K$
(D) $K^{\prime}=$ $(-1)^{n+2} K$
96. Let S be a compact connected oriented n-surface in \mathbb{R}^{n+1}. Which of the following is a necessary and sufficient condition for the Gauss-Kronecker curvature to be non zero for all $p \in S$.
(A) The second fundamental form is positive definite at each point.
(B) The first fundamental form is positive definite at each point.
(C) The second fundamental form is negative definite at each point.
(D) The second fundamental form is definite at each point.
97. Which of the following is not true for a parametrized n-surface in \mathbb{R}^{n+k} ?
(A) It is a smooth map
(B) Its domain is an open set in \mathbb{R}^{n}
(C) Its domain is a disconnected set in \mathbb{R}^{n}
(D) It is regular
98. Let $\varphi: U \rightarrow \mathbb{R}^{3}$ be given by $\varphi(\theta, \phi)=(r \cos \theta \sin \phi, r \sin \theta \sin \phi, r \cos \phi)$ where $U=\left\{(\theta, \phi) \in \mathbb{R}^{2}: 0<\phi<\pi\right\}$ and $r>0$. Then which of the following is true?
(A) φ is a parametrized 2-surface
(B) Image of φ is the 2-sphere of radius r in \mathbb{R}^{3} with the north and south poles missing
(C) φ is not one to one
(D) All the above are true
99. Let $\alpha: I \rightarrow \mathbb{R}^{2}$ given by $\alpha(t)=(x(t), y(t))$ be a regular parametrized curve in \mathbb{R}^{2} whose image lies above the x_{1}-axis. Then the parametrized surface of revolution obtained by rotating α about the x_{1}-axis is given by \ldots
(A) $\varphi: I \times \mathbb{R} \rightarrow \mathbb{R}^{3}, \varphi(t, \theta)=(x(t), y(t) \sin \theta, y(t) \cos \theta)$
(B) $\varphi: I \times \mathbb{R} \rightarrow \mathbb{R}^{3}, \varphi(t, \theta)=(x(t), y(t) \cos \theta, y(t) \sin \theta)$
(C) $\varphi: I \rightarrow \mathbb{R}^{3}, \varphi(t)=(x(t), y(t) \sin t, y(t) \cos t)$
(D) $\varphi: I \rightarrow \mathbb{R}^{3}, \varphi(t)=(x(t), y(t) \cos t, y(t) \sin t)$
100. Let $\varphi: U \rightarrow \mathbb{R}^{4}$ be given by $\varphi(\phi, \theta, \psi)=$ $(\sin \phi \sin \theta \sin \psi, \cos \phi \sin \theta \sin \psi, \cos \theta \sin \psi, \cos \psi) \quad$ where $\quad U=\{(\phi, \theta, \psi): \phi \in$ $\mathbb{R}, 0<\theta<\pi, 0<\psi<\pi\}$. Then which of the following is true?
(A) φ is smooth and U is open
(B) φ is a parametrized 3-surface in \mathbb{R}^{4}
(C) Image of φ is contained in the unit 3-sphere in \mathbb{R}^{4}
(D) All the above are true

FOURTH SEMESTER M.Sc. MATHEMATICS
 ME800401-DIFFERENTIAL GEOMETRY
 MULTIPLE CHOICE QUESTIONS-ANSWER KEY

Module 1		Module 2		Module 3		Module 4	
Qn.No	Correct Choice						
1	D	26	C	51	B	76	A
2	B	27	C	52	D	77	B
3	C	28	B	53	A	78	C
4	B	29	D	54	D	79	B
5	B	30	A	55	C	80	D
6	D	31	A	56	A	81	B
7	D	32	B	57	D	82	C
8	C	33	A	58	A	83	A
9	D	34	C	59	C	84	C
10	C	35	D	60	B	85	B
11	A	36	A	61	B	86	A
12	A	37	B	62	D	87	C
13	C	38	B	63	A	88	C
14	B	39	B	64	B	89	B
15	A	40	A	65	C	90	C
16	B	41	B	66	A	91	A
17	A	42	D	67	B	92	D
18	D	43	A	68	B	93	B
19	B	44	A	69	A	94	A
20	D	45	C	70	A	95	B
21	A	46	C	71	A	96	D
22	C	47	D	72	C	97	C
23	B	48	C	73	D	98	D
24	C	49	A	74	B	99	B
25	C	50	B	75	A	100	D

