ME010401 - SPECTRAL THEORY

MCQ for private students

- 1. Which of the following space is reflexive?
 - A. l^1
 - B. l^2
 - C. l^{∞}
 - D. $L^{1}[a, b]$
- 2. Which of the following space is not reflexive?
 - A. \mathbb{R}^n
 - B. l^2
 - C. l^1
 - D. l^3
- 3. Consider the normed space X and the functional g_x defined by $g_x(f) = f(x), \ \forall f \in X'$. Then which of the following is true?
 - A. $||g_x|| = ||x||$ B. $||g_x|| < ||x||$
 - C. $||g_x|| > ||x||$
 - D. None of these
- 4. Consider \mathbb{R} with usual metric. Which of the following set is nowhere dense in \mathbb{R} ?
 - A. \mathbb{Q}
 - В. №
 - C. (1, 2)
 - D. None of these.
- 5. Which of the following is a set of first category?

- A. \mathbb{R}
- B. \mathbb{C}
- C. \mathbb{R}^n
- D. \mathbb{Z}
- 6. Which of the following is a set of second category?
 - A. ℕ
 - B. ℤ
 - C. \mathbb{Q}
 - D. \mathbb{R}
- 7. Let X be a finite dimensional normed space. Which of the following is false?
 - A. strong convergence \implies weak convergence
 - B. weak convergence \implies strong convergence
 - C. weak convergence \Rightarrow strong convergence
 - D. strong convergence \iff weak convergence
- 8. X is a reflexive space and $C: X \to X''$ be the canonical mapping. Then which of the following is true?
 - A. C is bijective
 - B. C is linear
 - C. C is isometric
 - D. all of the above
- 9. Which of the following statement is false?
 - A. If X is reflexive, then it is complete.
 - B. If X is complete, then it is reflexive.
 - C. Every Hilbert space is reflexive.

D. Every finite dimensional normed space is reflexive.

- 10. Let X and Y be normed spaces and $\{T_n\}$ be a uniformly operator convergent sequence in B(X, Y) with limit T. Which of the following statement is true?
 - A. $||T_n T|| \to 0$ B. $||T_n x - Tx|| \to 0$, $\forall x \in X$ C. $|f(T_n x) - f(Tx)| \to 0$, $\forall x \in X$ and $\forall f \in Y'$ D. All the above
- 11. Let X and Y be normed spaces and $\{T_n\}$ be a strongly operator convergent sequence in B(X, Y) with limit T. Find the statement which is not always true.
 - A. $||T_n T|| \to 0$ B. $||T_n x - Tx|| \to 0$, $\forall x \in X$ C. $|f(T_n x) - f(Tx)| \to 0$, $\forall x \in X$ and $\forall f \in Y'$ D. $||f(T_n x) - f(Tx)|| \to 0$, $\forall x \in X$ and $\forall f \in Y'$
- 12. In a normed space X it is given that $x_n \rightharpoonup x$. Which of the following is true?
 - A. The sequence $\{||x_n||\}$ is bounded
 - B. For every element f of a total subset $M \subset X'$, $f(x_n) \to f(x)$
 - C. If X is a Hilbert space then $\langle x_n, z \rangle \to \langle x, z \rangle, \ \forall z \in X$
 - D. All the above
- 13. Let $T_n \in B(X, Y)$ where X is a Banach space and Y is a normed space. Let $\{T_n\}$ is strongly operator convergent with limit T. Which of the following statement is false?
 - A. $T \in B(X, Y)$
 - B. The sequence $\{||T_n||\}$ is bounded

- C. The sequence $\{T_n x\}$ is cauchy in Y for every x in a total subset M of X
- D. None of these
- 14. Which of the following mapping from \mathbb{R} to \mathbb{R} is an open mapping?
 - A. $f(x) = \sin x$
 - B. $f(x) = \cos x$
 - C. f(x) = k, where k is a constant
 - D. f(x) = 2x
- 15. Let X and Y be Banach spaces, $T \in B(X, Y)$ and T is bijective. Which of the following statement is false?
 - A. T is open
 - B. T^{-1} is bounded
 - C. T is continuous
 - D. T^{-1} is continuous
- 16. Let X and Y be Banach spaces, $T \in B(X, Y)$ and $B_n = B(0, \frac{1}{2^n})$. Then which of the following is true?
 - A. $\overline{T(B_1)}$ contains an open ball in Y
 - B. $\overline{T(B_n)}$ contains an open ball about $0 \in Y$
 - C. $T(B_0)$ contains an open ball about $0 \in Y$
 - D. All the above
- 17. Let X and Y be normed spaces and $T : X \to Y$ be a closed linear operator. Then which of the following statement is always true?
 - A. $\{(x, Tx) : x \in X\}$ is closed in $X \times Y$
 - B. T is bounded
 - C. T is continuous

D. T maps closed sets onto closed sets

- 18. Let X and Y be normed spaces and $T : X \to Y$ be a closed linear operator. Then which of the following statement is false?
 - A. $\{(x, Tx) : x \in X\}$ is closed in $X \times Y$

B. T maps closed sets to closed sets

- C. If $x_n \to x, x_n \in D(T)$ and $Tx_n \to y$, then $x \in D(T)$ and y = Tx
- D. If T is bounded and Y is complete, then D(T) is closed in X.
- 19. Let X = C[0, 1] and T be the differential operator $x \to x'$. Which of the following is true?
 - A. T is closed and bounded
 - B. T is bounded but not closed
 - C. T is closed but unbounded
 - D. T is neither closed nor bounded
- 20. Consider the mapping $T : \mathbb{R}^2 \to \mathbb{R}$ defined by T(x, y) = x. Which of the following is false?
 - A. T is linear and bounded
 - B. T continuous
 - C. T is open
 - D. None of these
- 21. Consider the mapping $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (x, 0). Which of the following is true?
 - A. T is linear and bounded
 - B. T is open
 - C. T is 1 1 and onto
 - D. T^{-1} is continuous

- 22. Let $S_n, T_n \in B(X, Y)$ are strongly operator convergent sequences with limits S and T respectively. What is the strong limit of $\{S_n + T_n\}$?
 - A. Not exist
 - B. S + T
 - C. Exist but cannot be determined
 - D. ST
- 23. Let X and Y be normed spaces. $T \in B(X, Y), x_n \rightharpoonup x$ in X, Then what is the weak limit of $\{Tx_n\}$ in Y?
 - A. Tx
 - B. f(Tx) for some $f \in Y'$
 - C. Does not exist
 - D. Not unique
- 24. Let $\{x_n\}$ and $\{y_n\}$ are sequences in a normed space X such that $x_n \rightharpoonup x$ and $y_n \rightharpoonup y$. Then what is the weak limit of $\{x_n + y_n\}$ in X?
 - A. Not exist
 - B. x + y
 - C. 0
 - D. Cannot be determined uniquely
- 25. Let $x_n \rightharpoonup x$ in a normed space X. Then which of the following statement is false?
 - A. $f(x_n) \to f(x), \forall f \in X'$ B. $(\alpha x_n) \to \alpha x, \forall \alpha \in K$ C. $||x_n - x|| \to 0$ D. x is unique
- 26. A fixed point of a mapping $T: X \to X$ of a set X is defined by

A. Tx = -xB. Tx = xC. $Tx = x^2$ D. Tx = 0

27. Fixed points of the mapping $Tx = x^2$ on \mathbb{R} is

- A. 1 and -1
- B. 0 and 1
- C. 0 and -1
- D. None of these.
- 28. Consider the mapping $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (2x, 0). The fixed points of T are
 - A. (0, 0) only
 - B. (0, 1) only
 - C. (1, 0) only
 - D. (0,0) and (1,1)

29. Banach Fixed point theorem is stated as

- A. Let $X \neq \phi$ be a complete metric space and let $T : X \to X$ be a contraction on X. Then T has at most one fixed point.
- B. Let $X \neq \phi$ be a metric space and let $T : X \to X$ be a contraction on X. Then T has precisely one fixed point.
- C. Let $X \neq \phi$ be a metric space and let $T : X \to X$ be a contraction on X. Then T has at most one fixed point.
- D. Let $X \neq \phi$ be a complete metric space and let $T : X \to X$ be a contraction on X. Then T has precisely one fixed point.
- 30. A mapping is called contraction on a metric space if

- A. There is a positive real number $\alpha < 1$ such that $\forall x, y \in X$, $d(Tx, Ty) \leq \alpha d(x, y)$
- B. There is a positive real number $\alpha < 1$ such that $\forall x, y \in X$, $d(Tx, Ty) \ge \alpha d(x, y)$
- C. There is a positive real number $\alpha > 1$ such that $\forall x, y \in X$, $d(Tx, Ty) \leq \alpha d(x, y)$
- D. There is a positive real number $\alpha > 1$ such that $\forall x, y \in X$, $d(Tx, Ty) \ge \alpha d(x, y)$
- 31. The fixed points of the mapping $T:\mathbb{R}^2\to\mathbb{R}^2$ defined by T(x,y)=(x,0) are
 - A. Only (0, 0).
 - B. All points on the y axis.
 - C. All points on the x axis.
 - D. None of these.
- 32. A contraction T on a complete metric space
 - A. Is always Continuous
 - B. Has precisely one fixed point
 - C. Both (A) and (B)
 - D. None of these

33. The eigen values of the matrix $A = \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$ are

- A. 6 and 1
 B. 2 and 3
 C. -2 and -3
- D. -6 and -1
- 34. The characteristic equation of the matrix $\begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$ is

A. $\lambda^2 + 7\lambda - 6 = 0$ B. $\lambda^2 + 7\lambda + 6 = 0$ C. $\lambda^2 - 7\lambda + 6 = 0$ D. $\lambda^2 - 7\lambda - 6 = 0$

35. Which one is not true for spectral radius of an operator $T \in B(X, X)$ on a complex Banach space X.

A.
$$r_{\sigma}(T) \leq ||T||$$

B. $r_{\sigma}(T) = \sup_{\lambda \in \sigma(T)} |\lambda|$

C.
$$r_{\sigma}(T) = \lim_{n \to \infty} \sqrt[n]{||T^n||}$$

- D. The radius of the largest closed disk centred at the origin of the complex plane and containing $\sigma(T)$.
- 36. Which of the following statement is true. Eigen vectors $x_1, x_2, \dots x_n$ corresponding to different eigen values $\lambda_1, \lambda_2, \dots \lambda_n$ of a linear operator T on a vector space X
 - A. Constitute a linearly independent set
 - B. Constitute a linearly dependent set
 - C. Constitute an idempotent set
 - D. None of these
- 37. Let $X \neq \phi$ be a complex normed space and λ be a regular value of the linear operator $T : D(T) \to X$ with $D(T) \subseteq X$. Then which of the following is false?
 - A. $R_{\lambda}(T)$ is exist
 - B. $R_{\lambda}(T)$ is unbounded
 - C. $R_{\lambda}(T)$ is defined on a set which is dense in X
 - D. $R_{\lambda}(T)$ bounded

- 38. The set of all λ such that $R_{\lambda}(T)$ exists, $R_{\lambda}(T)$ is defined on a set which is dense in X and $R_{\lambda}(T)$ is unbounded is called
 - A. Point spectrum
 - B. Continuous spectrum
 - C. Residual spectrum
 - D. Resolvent set
- 39. The set of all λ such that $R_{\lambda}(T)$ does not exist is called
 - A. Point spectrum
 - B. Continuous spectrum
 - C. Residual spectrum
 - D. Resolvent set
- 40. The set of all λ such that $R_{\lambda}(T)$ exists, $R_{\lambda}(T)$ is defined on a set which is not dense in X is called
 - A. Point spectrum
 - B. Continuous spectrum
 - C. Residual spectrum
 - D. Resolvent set
- 41. The set of all regular values of a linear operator is called
 - A. Point spectrum
 - B. Continuous spectrum
 - C. Residual spectrum
 - D. Resolvent set

42. An $n \times n$ matrix B is said to be similar to an $n \times n$ matrix A if

- A. there exists a non-singular matrix C such that $B = C^{-1}AC$
- B. there exists a singular matrix C such that $B = C^{-1}AC$

- C. there exists a Hermitian matrix C such that $B = C^{-1}AC$
- D. there exists a skew-Hermitian matrix C such that $B = C^{-1}AC$
- 43. The spectrum of a linear operator on a finite dimensional space is
 - A. Point spectrum
 - B. Continuous spectrum
 - C. Residual spectrum
 - D. All the above
- 44. Let $T : l^2 \to l^2$ be a linear operator defined by $T(x_1, x_2, \cdots) = (0, x_1, x_2, \cdots)$. Then spectral value of T is
 - A. $\{1\}$
 - B. {0}
 - C. $\{0, 1\}$
 - D. $\{-1\}$
- 45. The spectrum of a bounded linear operator T on a complex Banach space X is
 - A. Open and lies in the disk given by $|\lambda| < ||T||$
 - B. Open and compact
 - C. Closed, compact and lies in the disk given by $|\lambda| \leq ||T||$
 - D. None of these
- 46. The resolvent set of a bounded linear operator T on a complex Banach space X is
 - A. Open
 - B. Closed
 - C. Compact
 - D. None of these

- 47. Resolvent of a linear operator T on a complex Banach space X does not satisfy
 - A. $R_{\mu} R_{\lambda} = (\mu \lambda)R_{\mu}R_{\lambda}$, where $\lambda, \mu \in \rho(T)$ B. If ST = TS then $SR_{\lambda} = R_{\lambda}S$, where $S \in B(X, X)$ C. $R_{\lambda}R_{\mu} = R_{\mu}R_{\lambda}$, where $\lambda, \mu \in \rho(T)$
 - D. If $\lambda \in \rho(S) \cap \rho(T)$ then $R_{\lambda}(S) R_{\lambda}(T) = R_{\lambda}(S)(S T)R_{\lambda}(T)$ where $S \in B(X, X)$
- 48. Let X be a complex Banach space and $T:X\to X$ a linear operator and . If T is closed or bounded, then
 - A. $R_{\lambda}(T)$ is defined on the whole space X
 - B. $R_{\lambda}(T)$ is bounded
 - C. $R_{\lambda}(T)$ is defined on the whole space X and bounded
 - D. None of these
- 49. A bounded linear operator T on a Banach space is said to be idempotent if
 - A. $T^2 = T$ B. $T^2 = T^{-1}$
 - C. $T^2 = 0$
 - D. $T^2 = I$
- 50. Which of the following statement is false?
 - A. A linear operator on a finite dimensional complex normed space $X \neq \{0\}$ has at least one eigen value
 - B. Similar matrices have same eigen values
 - C. Matrices representing a given linear operator $T: X \to X$ on a finite dimensional normed space X relative to various bases for X have different eigenvalues.

- D. Eigenvectors corresponding to different eigenvalues of a linear operator T on a vector space X constitute a linearly independent set
- 51. A normed algebra is a normed space which is an algebra with identity e satisfying:
 - A. $||xy|| \le ||x|| + ||y||$ for all $x, y \in A$
 - B. ||xy|| = ||x|| ||y|| for all $x, y \in A$
 - C. $||xy|| \le ||x|| ||y||$ for all $x, y \in A$
 - D. ||xy|| = ||x|| + ||y|| for all $x, y \in A$
- 52. Which of the following is not a commutative Banach Algebra:
 - A. Real line \mathbf{R}
 - B. Complex plane \mathbf{C}
 - C. B(X, X) with dim X = n
 - D. C[a,b]
- 53. Let A be a complex Banach algebra with identity e. If $x \in A$, then e x is invertible when:
 - A. $||x|| \le 1$
 - B. ||x|| < 1
 - C. $||x|| \ge 1$
 - D. ||x|| > 1
- 54. Let A be a complex Banach algebra with identity e. The set of all invertible elements of A form:
 - A. a closed subset of A
 - B. an open subset of A
 - C. a compact subset of A
 - D. a complete subspace of A

55. Let A be a complex Banach algebra with identity e. Then for any $x \in A$

- A. the spectrum $\sigma(x)$ is bounded
- B. the spectrum $\sigma(x)$ is closed
- C. the spectrum $\sigma(x)$ is compact
- D. all the above
- 56. The identity operator $I : X \to X$ defined on an infinite dimensional space X is:
 - A. compact
 - B. not compact
 - C. not bounded
 - D. none of the above
- 57. Let X and Y be normed spaces and $T : X \to Y$ a bounded linear operator, then :
 - A. T is compact, if $dimT(X) < \infty$
 - B. T is compact, if $dim X < \infty$
 - C. T is compact, if $dim X < \infty$ and $dim T(X) < \infty$
 - D. all the above
- 58. Let (T_n) be a sequence of compact linear operators from a normed space X into a Banach space Y, then :
 - A. T is compact, if (T_n) is strongly operator convergent to T
 - B. T is compact, if (T_n) is uniformly operator convergent to T
 - C. T is compact, if (T_n) is weakly operator convergent to T
 - D. all the above
- 59. The zero operator on any normed space is :
 - A. not bounded

- B. not compact
- C. compact
- D. none of the above
- 60. Let X and Y be normed spaces and $T: X \to Y$ a compact linear operator, then :
 - A. (Tx_n) is strongly convergent in Y if (x_n) is weakly convergent in X B. (Tx_n) is strongly convergent in Y if (x_n) is strongly convergent in X C. $)(Tx_n)$ is weakly convergent in Y if (x_n) is weakly convergent in X D. all the above
- 61. Let B be a subset of a metric space X:
 - A. if B is relatively compact, then B is totally bounded
 - B. if B is totally bounded, then B is separable
 - C. if B is totally bounded and X is complete, then B is relatively compact
 - D. all the above
- 62. Let B be a subset of a metric space X:
 - A. if B is relatively compact, then B is totally bounded
 - B. if B is totally bounded, then B is separable
 - C. if B is totally bounded, then B is bounded
 - D. all the above
- 63. Let X and Y be normed spaces and $T : X \to Y$ a compact linear operator, then :
 - A. the range R(T) is separable
 - B. T(X) is separable
 - C. the range R(T) has a countable dense subset

D. all the above

64. Let X and Y be normed spaces and $T : X \to Y$ a compact linear operator. If X' and Y' are the dual spaces of X and Y then :

A. the adjoint operator $T^{\times}: Y' \to X'$ is compact

- B. the adjoint operator $T^{\times}: Y' \to X'$ is bounded
- C. the adjoint operator $T^{\times}: Y' \to X'$ exists
- D. all the above
- 65. Let X be a normed space and $T: X \to X$ a compact linear operator, then the set of eigenvalues of X is:
 - A. empty
 - B. finite
 - C. countable
 - D. uncountable
- 66. Let X be a normed space and $T: X \to X$ a compact linear operator, then the set of eigenvalues of X has:
 - A. no accumulation point
 - B. only possible accumulation point 0
 - C. only possible accumulation point 1
 - D. none of the above
- 67. Let X be a normed space and $T: X \to X$ a compact linear operator, then for $\lambda \neq 0$ the eigenspace of T is:
 - A. countable
 - B. uncountable
 - C. finite
 - D. empty

- 68. Let X be a normed space and $T : X \to X$ a compact linear operator, then every spectral value $\lambda \neq 0$:
 - A. is an eigenvalue
 - B. is a regular value
 - C. is in residual spectrum
 - D. is in continuous spectrum
- 69. Let X be an infinite dimensional normed space and $T : X \to X$ a compact linear operator, then:
 - A. $0 \notin \sigma(T)$ B. $0 \in \sigma(T)$ C. $\sigma(T) = \phi$ D. none of the above
- 70. Let A be a complex Banach algebra with identity e. Which of the following statement is true?
 - A. The set of all λ in the complex plane such that $x \lambda e$ is not invertible is the spectrum of x.
 - B. The set of all λ in the complex plane such that $x \lambda e$ is invertible is the spectrum of x.
 - C. The set of all λ in the complex plane such that $x \lambda e$ is not invertible is the resolvant set of x.
 - D. none of the above
- 71. Let A be a complex Banach algebra with identity e. If $x \in A$ then, the spectral radius $r_{\sigma}(x)$ satisfies:
 - A. $r_{\sigma}(x) < ||x||$ B. $r_{\sigma}(x) \leq ||x||$ C. $r_{\sigma}(x) > ||x||$

D. $r_{\sigma}(x) \ge ||x||$

- 72. Let X and Y be normed spaces and $T : X \to Y$ a compact linear operator, then :
 - A. $\overline{T(M)}$ is compact, for any bounded set $M \subseteq X$
 - B. T(M) is compact, for any bounded set $M \subseteq X$
 - C. T(M) is relatively compact, for any set $M \subseteq X$
 - D. all the above
- 73. Let X and Y be normed spaces and $T : X \to Y$ a compact linear operator, then :
 - A. T is bounded
 - B. T is continous
 - C. T is bounded and continuous
 - D. T is bounded but need not be continuous
- 74. Let X and Y be normed spaces, $T : X \to Y$ a compact linear operator and $U = \{x \in X : ||x|| = 1\}$, then :
 - A. $\overline{T(U)}$ is not compact
 - B. T(U) is compact
 - C. T(U) is not relatively compact
 - D. none of the above
- 75. Let X be a normed space and $T: X \to X$ a compact linear operator, then for $\lambda \neq 0$:
 - A. the nullspaces of $T_{\lambda}, T_{\lambda}^2, T_{\lambda}^3, \dots$ are closed
 - B. the nullspaces of $T_{\lambda}, T_{\lambda}^2, T_{\lambda}^3, \dots$ are infinite dimensional
 - C. the ranges of $T_{\lambda}, T_{\lambda}^2, T_{\lambda}^3, \dots$ are closed
 - D. none of the above

- 76. Let H be a Hilbert space. The bounded linear operator $T : H \to H$ satisfying the condition $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in H$ is called
 - A. Hilbert-adjoint operator
 - B. Adjoint operator
 - C. Self-adjoint operator
 - D. Normal operator
- 77. A bounded linear operator $T: H \to H$ on a complex Hilbert space H is self-adjoint if and only if

A.
$$T = T^{-1}$$

B. $TT^* = T^*T$
C. $T = T^*$
D. $TT^* = 0$

- 78. Let $T: H \to H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. Then the eigenvalues of T (if they exist) are
 - A. 0 or 1
 - B. imaginary
 - C. real
 - D. None of these
- 79. Let $T: H \to H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. Then a number λ belongs to the resolvent set $\rho(T)$ of T if and only if there exists a c > 0 such that for every $x \in H$,
 - A. $||T_{\lambda}x|| \leq c||x||$
 - B. $||T_{\lambda}x|| \ge c||x||$
 - C. $||T_{\lambda}x|| = c||x||$
 - D. $||T_{\lambda}x|| \neq c||x||$

- 80. The spectrum $\sigma(T)$ of a bounded self-adjoint linear operator $T: H \to H$ on a complex Hilbert space H is
 - A. real
 - B. imaginary
 - C. empty
 - D. $\{0, 1\}$
- 81. The residual spectrum $\sigma_r(T)$ of a bounded self-adjoint linear operator $T: H \to H$ on a complex Hilbert space H is
 - A. empty
 - B. $\{0\}$
 - C. $\{0, 1\}$
 - D. imaginary
- 82. A bounded self-adjoint linear operator $T: H \to H$ on a Hilbert space H is said to be positive if
 - A. $\langle Tx, x \rangle = 0 \quad \forall x \in H$ B. $\langle Tx, x \rangle < 0 \quad \forall x \in H$ C. $\langle Tx, x \rangle > 0 \quad \forall x \in H$ D. $\langle Tx, x \rangle \ge 0 \quad \forall x \in H$
- 83. A bounded linear operator $P : H \to H$ on a Hilbert space H is a projection if and only if
 - A. P is self-adjoint
 - B. P is idempotent
 - C. P is self-adjoint and idempotent
 - D. P is normal
- 84. For any projection P on a Hilbert space H, which one of the following is correct?

- A. $\langle Px, x \rangle = ||Px||^2 \quad \forall x \in H$ B. $P \ge 0$ C. $||P|| \le 1$ D. All the above
- 85. Two closed subspaces Y and V of a Hilbert space H are orthogonal if and only if the corresponding projections P_Y and P_V satisfy
 - A. $P_Y P_V = I$
 - B. $P_Y P_V \neq I$
 - C. $P_Y P_V \neq 0$
 - D. $P_Y P_V = 0$
- 86. Let P_1 and P_2 be projections on a Hilbert space H. Then which one of the following is false?
 - A. The product $P = P_1P_2$ is a projection on H if and only if the projections P_1 and P_2 commute
 - B. The sum $P = P_1 + P_2$ is a projection on H if and only if $Y_1 = P_1(H)$ and $Y_2 = P_2(H)$ are orthogonal
 - C. The difference $P = P_2 P_1$ is a projection on H if and only if $Y_1 \subset Y_2$, where $Y_1 = P_1(H)$ and $Y_2 = P_2(H)$
 - D. None of the above
- 87. Let P_1 and P_2 be projections on a Hilbert space H and let $Y_1 = P_1(H)$ and $Y_2 = P_2(H)$. If the product $P = P_1P_2$ is a projection, P projects H onto
 - A. $Y_2 \cap Y_1^{\perp}$
 - B. $Y_1 \cap Y_2$
 - C. $Y_1 \oplus Y_2$
 - D. $Y_1 \cup Y_2$

- 88. Let P_1 and P_2 be projections on a Hilbert space H and let $Y_1 = P_1(H)$ and $Y_2 = P_2(H)$. If the sum $P = P_1 + P_2$ is a projection, P projects Honto
 - A. $Y_2 \cap Y_1^{\perp}$ B. $Y_1 \cap Y_2$
 - C. $Y_1 \oplus Y_2$
 - D. $Y_1 \cup Y_2$
- 89. Let P_1 and P_2 be projections on a Hilbert space H and let $Y_1 = P_1(H)$ and $Y_2 = P_2(H)$. If the difference $P = P_2 - P_1$ is a projection, Pprojects H onto
 - A. $Y_2 \cap Y_1^{\perp}$
 - B. $Y_1 \cap Y_2$
 - C. $Y_1 \oplus Y_2$
 - D. $Y_1 \cup Y_2$
- 90. Let P be a projection on a Hilbert space H and let Y = P(H). Which one of the following is false?
 - A. Y^{\perp} is the null space of P
 - B. I P also projects H onto Y
 - C. $P|_Y$ is the identity operator on Y
 - D. Y is a closed subspace of H
- 91. Which one of the following is correct?
 - A. The sum of positive operators is positive.
 - B. The product of positive operators is positive.
 - C. The difference of positive operators is positive.
 - D. None of these

- 92. For any bounded self-adjoint linear operator T on a complex Hilbert space H, ||T|| =
 - A. $\inf_{\|x\| \neq 1} |\langle Tx, x \rangle|$ B. $\sup_{\|x\| = 1} |\langle Tx, x \rangle|$ C. $\sup_{\|x\| = 1} \langle Tx, x \rangle$ D. $\inf_{\|x\| = 1} \langle Tx, x \rangle$
- 93. Which of the following is not a spectral value of a bounded self-adjoint linear operator $T: H \to H$ on a complex Hilbert space H.
 - A. iB. $m = \inf_{\|x\|=1} \langle Tx, x \rangle$
 - C. $M = \sup_{\|x\|=1} \langle Tx, x \rangle$

D. None of these

- 94. Let $T: H \to H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. The eigenvectors corresponding to different eigenvalues of T are
 - A. Normal
 - B. Orthogonal
 - C. In the same eigenspace
 - D. None of these
- 95. Let $T : H \to H$ be a bounded self-adjoint linear operator on a Hilbert space H and let $m = \inf_{\|x\|=1} \langle Tx, x \rangle$ and $M = \sup_{\|x\|=1} \langle Tx, x \rangle$. Then which one of the following is correct?

A. $\rho(T) \subset [m, M]$

B. $\rho(T) \subset (m, M)$ C. $\sigma(T) \subset [m, M]$ D. $\sigma(T) \subset (m, M)$

- 96. If $T : H \to H$ is a self-adjoint linear operator on a complex Hilbert space H, then $\langle Tx, x \rangle$ is
 - A. 0
 - B. 1
 - C. Real
 - D. Imaginary
- 97. If T_1 and T_2 are bounded self-adjoint linear operators on a complex Hilbert space H, which of the following is equivalent to $T_1 \leq T_2$
 - A. $0 \le T_2 T_1$
 - B. $T_2 T_1$ is positive
 - C. $\langle T_1 x, x \rangle \leq \langle T_2 x, x \rangle \quad \forall x \in H$
 - D. All of these
- 98. If the product ST of two positive operators S and T on a Hilbert space H is positive, if
 - A. S and T are bounded
 - B. S and T commute
 - C. S and T are continuous
 - D. None of these
- 99. Let H is a Hilbert space and Y is a closed subspace of H. If Y^{\perp} denotes the orthogonal complement of Y, which of the following is true?
 - A. $H = Y \cup Y^{\perp}$
 - B. $H = Y \cap Y^{\perp}$

- C. $H = Y \oplus Y^{\perp}$
- D. None of these

100. P is an idempotent operator if and only if

A.
$$P = P^{-1}$$

B. $\langle Px, x \rangle$ is real
C. $P^* = P$
D. $P^2 = P$

ME010401 - SPECTRAL THEORY

Answer Key

- 1. B
- 2. C
- 3. A
- 4. B
- 5. D
- 6. D
- 7. C
- 8. D
- 9. B
- 10. D
- 11. A
- 12. D
- 13. D

14. D

- 15. C
- 16. D
- 17. A
- 18. B
- 19. C
- 20. D

- 21. A
- 22. B
- 23. A
- 24. B
- 25. C
- 26. B
- 27. B
- 28. A
- 29. D
- 30. A
- 31. C
- 32. C
- 33. A
- 34. C
- 35. D
- 36. A
- 37. B
- 38. B
- 39. A
- 40. C
- 41. D
- 42. A

- 43. A
- 44. B
- 45. C
- 46. A
- 47. D
- 48. C
- 49. A
- 50. C
- 51. C
- 52. C
- 53. B
- 54. B
- 55. D
- 56. B
- 57. D
- 58. B
- 59. C
- 60. D
- 61. D
- 62. D
- 63. D
- 64. D

- 65. C
- 66. B
- 67. C
- 68. A
- 69. B
- 70. A
- 71. B
- 72. A
- 73. C
- 74. B
- 75. C
- 76. A
- 77. C
- 78. C
- 79. B
- 80. A
- 81. A
- 82. D
- 83. C
- 84. D
- 85. D
- 86. D

87. B

- 88. C
- 89. A
- 90. B
- 91. A
- 92. B
- 93. A
- 94. B
- 95. C
- 96. C
- 97. D
- 98. B
- 99. C
- 100. D