ME010401 - SPECTRAL THEORY
 MCQ for private students

1. Which of the following space is reflexive?
A. l^{1}
B. l^{2}
C. l^{∞}
D. $L^{1}[a, b]$
2. Which of the following space is not reflexive?
A. \mathbb{R}^{n}
B. l^{2}
C. l^{1}
D. l^{3}
3. Consider the normed space X and the functional g_{x} defined by $g_{x}(f)=$ $f(x), \forall f \in X^{\prime}$. Then which of the following is true?
A. $\left\|g_{x}\right\|=\|x\|$
B. $\left\|g_{x}\right\|<\|x\|$
C. $\left\|g_{x}\right\|>\|x\|$
D. None of these
4. Consider \mathbb{R} with usual metric. Which of the following set is nowhere dense in \mathbb{R} ?
A. \mathbb{Q}
B. \mathbb{N}
C. $(1,2)$
D. None of these.
5. Which of the following is a set of first category?
A. \mathbb{R}
B. \mathbb{C}
C. \mathbb{R}^{n}
D. \mathbb{Z}
6. Which of the following is a set of second category?
A. \mathbb{N}
B. \mathbb{Z}
C. \mathbb{Q}
D. \mathbb{R}
7. Let X be a finite dimensional normed space. Which of the following is false?
A. strong convergence \Longrightarrow weak convergence
B. weak convergence \Longrightarrow strong convergence
C. weak convergence \nRightarrow strong convergence
D. strong convergence \Longleftrightarrow weak convergence
8. X is a reflexive space and $C: X \rightarrow X^{\prime \prime}$ be the canonical mapping. Then which of the following is true?
A. C is bijective
B. C is linear
C. C is isometric
D. all of the above
9. Which of the following statement is false?
A. If X is reflexive, then it is complete.
B. If X is complete, then it is reflexive.
C. Every Hilbert space is reflexive.
D. Every finite dimensional normed space is reflexive.
10. Let X and Y be normed spaces and $\left\{T_{n}\right\}$ be a uniformly operator convergent sequence in $B(X, Y)$ with limit T. Which of the following statement is true?
A. $\left\|T_{n}-T\right\| \rightarrow 0$
B. $\left\|T_{n} x-T x\right\| \rightarrow 0, \quad \forall x \in X$
C. $\left|f\left(T_{n} x\right)-f(T x)\right| \rightarrow 0, \quad \forall x \in X$ and $\forall f \in Y^{\prime}$
D. All the above
11. Let X and Y be normed spaces and $\left\{T_{n}\right\}$ be a strongly operator convergent sequence in $B(X, Y)$ with limit T. Find the statement which is not always true.
A. $\left\|T_{n}-T\right\| \rightarrow 0$
B. $\left\|T_{n} x-T x\right\| \rightarrow 0, \quad \forall x \in X$
C. $\left|f\left(T_{n} x\right)-f(T x)\right| \rightarrow 0, \quad \forall x \in X$ and $\forall f \in Y^{\prime}$
D. $\left\|f\left(T_{n} x\right)-f(T x)\right\| \rightarrow 0, \quad \forall x \in X$ and $\forall f \in Y^{\prime}$
12. In a normed space X it is given that $x_{n} \rightharpoonup x$. Which of the following is true?
A. The sequence $\left\{\left\|x_{n}\right\|\right\}$ is bounded
B. For every element f of a total subset $M \subset X^{\prime}, f\left(x_{n}\right) \rightarrow f(x)$
C. If X is a Hilbert space then $\left\langle x_{n}, z\right\rangle \rightarrow\langle x, z\rangle, \forall z \in X$
D. All the above
13. Let $T_{n} \in B(X, Y)$ where X is a Banach space and Y is a normed space. Let $\left\{T_{n}\right\}$ is strongly operator convergent with limit T. Which of the following statement is false?
A. $T \in B(X, Y)$
B. The sequence $\left\{\left\|T_{n}\right\|\right\}$ is bounded
C. The sequence $\left\{T_{n} x\right\}$ is cauchy in Y for every x in a total subset M of X
D. None of these
14. Which of the following mapping from \mathbb{R} to \mathbb{R} is an open mapping?
A. $f(x)=\sin x$
B. $f(x)=\cos x$
C. $f(x)=k$, where k is a constant
D. $f(x)=2 x$
15. Let X and Y be Banach spaces, $T \in B(X, Y)$ and T is bijective. Which of the following statement is false?
A. T is open
B. T^{-1} is bounded
C. T is continuous
D. T^{-1} is continuous
16. Let X and Y be Banach spaces, $T \in B(X, Y)$ and $B_{n}=B\left(0, \frac{1}{2^{n}}\right)$. Then which of the following is true?
A. $\overline{T\left(B_{1}\right)}$ contains an open ball in Y
B. $\overline{T\left(B_{n}\right)}$ contains an open ball about $0 \in Y$
C. $T\left(B_{0}\right)$ contains an open ball about $0 \in Y$
D. All the above
17. Let X and Y be normed spaces and $T: X \rightarrow Y$ be a closed linear operator. Then which of the following statement is always true?
A. $\{(x, T x): x \in X\}$ is closed in $X \times Y$
B. T is bounded
C. T is continuous
D. T maps closed sets onto closed sets
18. Let X and Y be normed spaces and $T: X \rightarrow Y$ be a closed linear operator. Then which of the following statement is false?
A. $\{(x, T x): x \in X\}$ is closed in $X \times Y$
B. T maps closed sets to closed sets
C. If $x_{n} \rightarrow x, x_{n} \in D(T)$ and $T x_{n} \rightarrow y$, then $x \in D(T)$ and $y=T x$
D. If T is bounded and Y is complete, then $D(T)$ is closed in X.
19. Let $X=C[0,1]$ and T be the differential operator $x \rightarrow x^{\prime}$. Which of the following is true?
A. T is closed and bounded
B. T is bounded but not closed
C. T is closed but unbounded
D. T is neither closed nor bounded

20 . Consider the mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $T(x, y)=x$. Which of the following is false?
A. T is linear and bounded
B. T continuous
C. T is open
D. None of these
21. Consider the mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=(x, 0)$. Which of the following is true?
A. T is linear and bounded
B. T is open
C. T is $1-1$ and onto
D. T^{-1} is continuous
22. Let $S_{n}, T_{n} \in B(X, Y)$ are strongly operator convergent sequences with limits S and T respectively. What is the strong limit of $\left\{S_{n}+T_{n}\right\}$?
A. Not exist
B. $S+T$
C. Exist but cannot be determined
D. $S T$
23. Let X and Y be normed spaces. $T \in B(X, Y), x_{n} \rightharpoonup x$ in X, Then what is the weak limit of $\left\{T x_{n}\right\}$ in Y ?
A. $T x$
B. $f(T x)$ for some $f \in Y^{\prime}$
C. Does not exist
D. Not unique
24. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences in a normed space X such that $x_{n} \rightharpoonup x$ and $y_{n} \rightharpoonup y$. Thenwhat is the weak limit of $\left\{x_{n}+y_{n}\right\}$ in X ?
A. Not exist
B. $x+y$
C. 0
D. Cannot be determined uniquely
25. Let $x_{n} \rightharpoonup x$ in a normed space X. Then which of the following statement is false?
A. $f\left(x_{n}\right) \rightarrow f(x), \forall f \in X^{\prime}$
B. $\left(\alpha x_{n}\right) \rightharpoonup \alpha x, \forall \alpha \in K$
C. $\left\|x_{n}-x\right\| \rightarrow 0$
D. x is unique
26. A fixed point of a mapping $T: X \rightarrow X$ of a set X is defined by
A. $T x=-x$
B. $T x=x$
C. $T x=x^{2}$
D. $T x=0$
27. Fixed points of the mapping $T x=x^{2}$ on \mathbb{R} is
A. 1 and -1
B. 0 and 1
C. 0 and -1
D. None of these.
28. Consider the mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=(2 x, 0)$. The fixed points of T are
A. $(0,0)$ only
B. $(0,1)$ only
C. $(1,0)$ only
D. $(0,0)$ and $(1,1)$
29. Banach Fixed point theorem is stated as
A. Let $X \neq \phi$ be a complete metric space and let $T: X \rightarrow X$ be a contraction on X. Then T has at most one fixed point.
B. Let $X \neq \phi$ be a metric space and let $T: X \rightarrow X$ be a contraction on X. Then T has precisely one fixed point.
C. Let $X \neq \phi$ be a metric space and let $T: X \rightarrow X$ be a contraction on X. Then T has at most one fixed point.
D. Let $X \neq \phi$ be a complete metric space and let $T: X \rightarrow X$ be a contraction on X. Then T has precisely one fixed point.
30. A mapping is called contraction on a metric space if
A. There is a positive real number $\alpha<1$ such that $\forall x, y \in X$, $d(T x, T y) \leq \alpha d(x, y)$
B. There is a positive real number $\alpha<1$ such that $\forall x, y \in X$, $d(T x, T y) \geq \alpha d(x, y)$
C. There is a positive real number $\alpha>1$ such that $\forall x, y \in X$, $d(T x, T y) \leq \alpha d(x, y)$
D. There is a positive real number $\alpha>1$ such that $\forall x, y \in X$, $d(T x, T y) \geq \alpha d(x, y)$
31. The fixed points of the mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=(x, 0)$ are
A. Only $(0,0)$.
B. All points on the y axis.
C. All points on the x axis.
D. None of these.
32. A contraction T on a complete metric space
A. Is always Continuous
B. Has precisely one fixed point
C. Both (A) and (B)
D. None of these
33. The eigen values of the matrix $A=\left(\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right)$ are
A. 6 and 1
B. 2 and 3
C. -2 and -3
D. -6 and -1
34. The characteristic equation of the matrix $\left(\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right)$ is
A. $\lambda^{2}+7 \lambda-6=0$
B. $\lambda^{2}+7 \lambda+6=0$
C. $\lambda^{2}-7 \lambda+6=0$
D. $\lambda^{2}-7 \lambda-6=0$
35. Which one is not true for spectral radius of an operator $T \in B(X, X)$ on a complex Banach space X.
A. $r_{\sigma}(T) \leq\|T\|$
B. $r_{\sigma}(T)=\sup _{\lambda \in \sigma(T)}|\lambda|$
C. $r_{\sigma}(T)=\lim _{n \rightarrow \infty} \sqrt[n]{\left\|T^{n}\right\|}$
D. The radius of the largest closed disk centred at the origin of the complex plane and containing $\sigma(T)$.
36. Which of the following statement is true.

Eigen vectors $x_{1}, x_{2}, \cdots x_{n}$ corresponding to different eigen values $\lambda_{1}, \lambda_{2}, \cdots \lambda_{n}$ of a linear operator T on a vector space X
A. Constitute a linearly independent set
B. Constitute a linearly dependent set
C. Constitute an idempotent set
D. None of these
37. Let $X \neq \phi$ be a complex normed space and λ be a regular value of the linear operator $T: D(T) \rightarrow X$ with $D(T) \subseteq X$. Then which of the following is false?
A. $R_{\lambda}(T)$ is exist
B. $R_{\lambda}(T)$ is unbounded
C. $R_{\lambda}(T)$ is defined on a set which is dense in X
D. $R_{\lambda}(T)$ bounded
38. The set of all λ such that $R_{\lambda}(T)$ exists, $R_{\lambda}(T)$ is defined on a set which is dense in X and $R_{\lambda}(T)$ is unbounded is called
A. Point spectrum
B. Continuous spectrum
C. Residual spectrum
D. Resolvent set
39. The set of all λ such that $R_{\lambda}(T)$ does not exist is called
A. Point spectrum
B. Continuous spectrum
C. Residual spectrum
D. Resolvent set
40. The set of all λ such that $R_{\lambda}(T)$ exists, $R_{\lambda}(T)$ is defined on a set which is not dense in X is called
A. Point spectrum
B. Continuous spectrum
C. Residual spectrum
D. Resolvent set
41. The set of all regular values of a linear operator is called
A. Point spectrum
B. Continuous spectrum
C. Residual spectrum
D. Resolvent set
42. An $n \times n$ matrix B is said to be similar to an $n \times n$ matrix A if
A. there exists a non-singular matrix C such that $B=C^{-1} A C$
B. there exists a singular matrix C such that $B=C^{-1} A C$
C. there exists a Hermitian matrix C such that $B=C^{-1} A C$
D. there exists a skew-Hermitian matrix C such that $B=C^{-1} A C$
43. The spectrum of a linear operator on a finite dimensional space is
A. Point spectrum
B. Continuous spectrum
C. Residual spectrum
D. All the above
44. Let $T: l^{2} \rightarrow l^{2}$ be a linear operator defined by $T\left(x_{1}, x_{2}, \cdots\right)=$ $\left(0, x_{1}, x_{2}, \cdots\right)$. Then spectral value of T is
A. $\{1\}$
B. $\{0\}$
C. $\{0,1\}$
D. $\{-1\}$
45. The spectrum of a bounded linear operator T on a complex Banach space X is
A. Open and lies in the disk given by $|\lambda|<\| T| |$
B. Open and compact
C. Closed, compact and lies in the disk given by $|\lambda| \leq||T||$
D. None of these
46. The resolvent set of a bounded linear operator T on a complex Banach space X is
A. Open
B. Closed
C. Compact
D. None of these
47. Resolvent of a linear operator T on a complex Banach space X does not satisfy
A. $R_{\mu}-R_{\lambda}=(\mu-\lambda) R_{\mu} R_{\lambda}$, where $\lambda, \mu \in \rho(T)$
B. If $S T=T S$ then $S R_{\lambda}=R_{\lambda} S$, where $S \in B(X, X)$
C. $R_{\lambda} R_{\mu}=R_{\mu} R_{\lambda}$, where $\lambda, \mu \in \rho(T)$
D. If $\lambda \in \rho(S) \cap \rho(T)$ then $R_{\lambda}(S)-R_{\lambda}(T)=R_{\lambda}(S)(S-T) R_{\lambda}(T)$ where $S \in B(X, X)$
48. Let X be a complex Banach space and $T: X \rightarrow X$ a linear operator and. If T is closed or bounded, then
A. $R_{\lambda}(T)$ is defined on the whole space X
B. $R_{\lambda}(T)$ is bounded
C. $R_{\lambda}(T)$ is defined on the whole space X and bounded
D. None of these
49. A bounded linear operator T on a Banach space is said to be idempotent if
A. $T^{2}=T$
B. $T^{2}=T^{-1}$
C. $T^{2}=0$
D. $T^{2}=I$
50. Which of the following statement is false?
A. A linear operator on a finite dimensional complex normed space $X \neq$ $\{0\}$ has at least one eigen value
B. Similar matrices have same eigen values
C. Matrices representing a given linear operator $T: X \rightarrow X$ on a finite dimensional normed space X relative to various bases for X have different eigenvalues.
D. Eigenvectors corresponding to different eigenvalues of a linear operator T on a vector space X constitute a linearly independent set
51. A normed algebra is a normed space which is an algebra with identity e satisfying:
A. $\|x y\| \leq\|x\|+\|y\|$ for all $x, y \in A$
B. $\|x y\|=\|x\|\|y\|$ for all $x, y \in A$
C. $\|x y\| \leq\|x\|\|y\|$ for all $x, y \in A$
D. $\|x y\|=\|x\|+\|y\|$ for all $x, y \in A$
52. Which of the following is not a commutative Banach Algebra:
A. Real line \mathbf{R}
B. Complex plane \mathbf{C}
C. $B(X, X)$ with $\operatorname{dim} X=n$
D. $C[a, b]$
53. Let A be a complex Banach algebra with identity e. If $x \in A$, then $e-x$ is invertible when:
A. $\|x\| \leq 1$
B. $\|x\|<1$
C. $\|x\| \geq 1$
D. $\|x\|>1$
54. Let A be a complex Banach algebra with identity e. The set of all invertible elements of A form:
A. a closed subset of A
B. an open subset of A
C. a compact subset of A
D. a complete subspace of A
55. Let A be a complex Banach algebra with identity e. Then for any $x \in A$
A. the spectrum $\sigma(x)$ is bounded
B. the spectrum $\sigma(x)$ is closed
C. the spectrum $\sigma(x)$ is compact
D. all the above
56. The identity operator $I: X \rightarrow X$ defined on an infinite dimensional space X is:
A. compact
B. not compact
C. not bounded
D. none of the above
57. Let X and Y be normed spaces and $T: X \rightarrow Y$ a bounded linear operator, then :
A. T is compact, if $\operatorname{dim} T(X)<\infty$
B. T is compact, if $\operatorname{dim} X<\infty$
C. T is compact, if $\operatorname{dim} X<\infty$ and $\operatorname{dim} T(X)<\infty$
D. all the above
58. Let $\left(T_{n}\right)$ be a sequence of compact linear operators from a normed space X into a Banach space Y, then :
A. T is compact, if $\left(T_{n}\right)$ is strongly operator convergent to T
B. T is compact, if $\left(T_{n}\right)$ is uniformly operator convergent to T
C. T is compact, if $\left(T_{n}\right)$ is weakly operator convergent to T
D. all the above
59. The zero operator on any normed space is :
A. not bounded
B. not compact
C. compact
D. none of the above
60. Let X and Y be normed spaces and $T: X \rightarrow Y$ a compact linear operator, then :
A. $\left(T x_{n}\right)$ is strongly convergent in Y if $\left(x_{n}\right)$ is weakly convergent in X
B. $\left(T x_{n}\right)$ is strongly convergent in Y if $\left(x_{n}\right)$ is strongly convergent in X
C. $)\left(T x_{n}\right)$ is weakly convergent in Y if $\left(x_{n}\right)$ is weakly convergent in X
D. all the above
61. Let B be a subset of a metric space X :
A. if B is relatively compact, then B is totally bounded
B. if B is totally bounded, then B is separable
C. if B is totally bounded and X is complete, then B is relatively compact
D. all the above
62. Let B be a subset of a metric space X :
A. if B is relatively compact, then B is totally bounded
B. if B is totally bounded, then B is separable
C. if B is totally bounded, then B is bounded
D. all the above
63. Let X and Y be normed spaces and $T: X \rightarrow Y$ a compact linear operator, then :
A. the range $R(T)$ is separable
B. $T(X)$ is separable
C. the range $R(T)$ has a countable dense subset
D. all the above
64. Let X and Y be normed spaces and $T: X \rightarrow Y$ a compact linear operator. If X^{\prime} and Y^{\prime} are the dual spaces of X and Y then :
A. the adjoint operator $T^{\times}: Y^{\prime} \rightarrow X^{\prime}$ is compact
B. the adjoint operator $T^{\times}: Y^{\prime} \rightarrow X^{\prime}$ is bounded
C. the adjoint operator $T^{\times}: Y^{\prime} \rightarrow X^{\prime}$ exists
D. all the above
65. Let X be a normed space and $T: X \rightarrow X$ a compact linear operator, then the set of eigenvalues of X is:
A. empty
B. finite
C. countable
D. uncountable
66. Let X be a normed space and $T: X \rightarrow X$ a compact linear operator, then the set of eigenvalues of X has:
A. no accumulation point
B. only possible accumulation point 0
C. only possible accumulation point 1
D. none of the above
67. Let X be a normed space and $T: X \rightarrow X$ a compact linear operator, then for $\lambda \neq 0$ the eigenspace of T is:
A. countable
B. uncountable
C. finite
D. empty
68. Let X be a normed space and $T: X \rightarrow X$ a compact linear operator, then every spectral value $\lambda \neq 0$:
A. is an eigenvalue
B. is a regular value
C. is in residual spectrum
D. is in continuous spectrum
69. Let X be an infinite dimensional normed space and $T: X \rightarrow X$ a compact linear operator, then:
A. $0 \notin \sigma(T)$
B. $0 \in \sigma(T)$
C. $\sigma(T)=\phi$
D. none of the above
70. Let A be a complex Banach algebra with identity e. Which of the following statement is true?
A. The set of all λ in the complex plane such that $x-\lambda e$ is not invertible is the spectrum of x.
B. The set of all λ in the complex plane such that $x-\lambda e$ is invertible is the spectrum of x.
C. The set of all λ in the complex plane such that $x-\lambda e$ is not invertible is the resolvant set of x.
D. none of the above
71. Let A be a complex Banach algebra with identity e. If $x \in A$ then, the spectral radius $r_{\sigma}(x)$ satisfies:
A. $r_{\sigma}(x)<\|x\|$
B. $r_{\sigma}(x) \leq\|x\|$
C. $r_{\sigma}(x)>\|x\|$
D. $r_{\sigma}(x) \geq\|x\|$
72. Let X and Y be normed spaces and $T: X \rightarrow Y$ a compact linear operator, then :
A. $\overline{T(M)}$ is compact, for any bounded set $M \subseteq X$
B. $T(M)$ is compact, for any bounded set $M \subseteq X$
C. $T(M)$ is relatively compact, for any set $M \subseteq X$
D. all the above
73. Let X and Y be normed spaces and $T: X \rightarrow Y$ a compact linear operator, then :
A. T is bounded
B. T is continous
C. T is bounded and continuous
D. T is bounded but need not be continuous
74. Let X and Y be normed spaces, $T: X \rightarrow Y$ a compact linear operator and $U=\{x \in X:\|x\|=1\}$, then :
A. $\overline{T(U)}$ is not compact
B. $\overline{T(U)}$ is compact
C. $T(U)$ is not relatively compact
D. none of the above
75. Let X be a normed space and $T: X \rightarrow X$ a compact linear operator, then for $\lambda \neq 0$:
A. the nullspaces of $T_{\lambda}, T_{\lambda}{ }^{2}, T_{\lambda}{ }^{3}, \ldots$ are closed
B. the nullspaces of $T_{\lambda}, T_{\lambda}{ }^{2}, T_{\lambda}{ }^{3}, \ldots$ are infinite dimensional
C. the ranges of $T_{\lambda}, T_{\lambda}{ }^{2}, T_{\lambda}{ }^{3}, \ldots$ are closed
D. none of the above
76. Let H be a Hilbert space. The bounded linear operator $T: H \rightarrow H$ satisfying the condition $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for all $x, y \in H$ is called
A. Hilbert-adjoint operator
B. Adjoint operator
C. Self-adjoint operator
D. Normal operator
77. A bounded linear operator $T: H \rightarrow H$ on a complex Hilbert space H is self-adjoint if and only if
A. $T=T^{-1}$
B. $T T^{*}=T^{*} T$
C. $T=T^{*}$
D. $T T^{*}=0$
78. Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. Then the eigenvalues of T (if they exist) are
A. 0 or 1
B. imaginary
C. real
D. None of these
79. Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. Then a number λ belongs to the resolvent set $\rho(T)$ of T if and only if there exists a $c>0$ such that for every $x \in H$,
A. $\left\|T_{\lambda} x\right\| \leq c\|x\|$
B. $\left\|T_{\lambda} x\right\| \geq c\|x\|$
C. $\left\|T_{\lambda} x\right\|=c\|x\|$
D. $\left\|T_{\lambda} x\right\| \neq c\|x\|$
80. The spectrum $\sigma(T)$ of a bounded self-adjoint linear operator $T: H \rightarrow H$ on a complex Hilbert space H is
A. real
B. imaginary
C. empty
D. $\{0,1\}$
81. The residual spectrum $\sigma_{r}(T)$ of a bounded self-adjoint linear operator $T: H \rightarrow H$ on a complex Hilbert space H is
A. empty
B. $\{0\}$
C. $\{0,1\}$
D. imaginary
82. A bounded self-adjoint linear operator $T: H \rightarrow H$ on a Hilbert space H is said to be positive if
A. $\langle T x, x\rangle=0 \quad \forall x \in H$
B. $\langle T x, x\rangle<0 \quad \forall x \in H$
C. $\langle T x, x\rangle>0 \quad \forall x \in H$
D. $\langle T x, x\rangle \geq 0 \quad \forall x \in H$
83. A bounded linear operator $P: H \rightarrow H$ on a Hilbert space H is a projection if and only if
A. P is self-adjoint
B. P is idempotent
C. P is self-adjoint and idempotent
D. P is normal
84. For any projection P on a Hilbert space H, which one of the following is correct?
A. $\langle P x, x\rangle=\|P x\|^{2} \quad \forall x \in H$
B. $P \geq 0$
C. $\|P\| \leq 1$
D. All the above
85. Two closed subspaces Y and V of a Hilbert space H are orthogonal if and only if the corresponding projections P_{Y} and P_{V} satisfy
A. $P_{Y} P_{V}=I$
B. $P_{Y} P_{V} \neq I$
C. $P_{Y} P_{V} \neq 0$
D. $P_{Y} P_{V}=0$
86. Let P_{1} and P_{2} be projections on a Hilbert space H. Then which one of the following is false?
A. The product $P=P_{1} P_{2}$ is a projection on H if and only if the projections P_{1} and P_{2} commute
B. The sum $P=P_{1}+P_{2}$ is a projection on H if and only if $Y_{1}=P_{1}(H)$ and $Y_{2}=P_{2}(H)$ are orthogonal
C. The difference $P=P_{2}-P_{1}$ is a projection on H if and only if $Y_{1} \subset Y_{2}$, where $Y_{1}=P_{1}(H)$ and $Y_{2}=P_{2}(H)$
D. None of the above
87. Let P_{1} and P_{2} be projections on a Hilbert space H and let $Y_{1}=P_{1}(H)$ and $Y_{2}=P_{2}(H)$. If the product $P=P_{1} P_{2}$ is a projection, P projects H onto
A. $Y_{2} \cap Y_{1}^{\perp}$
B. $Y_{1} \cap Y_{2}$
C. $Y_{1} \oplus Y_{2}$
D. $Y_{1} \cup Y_{2}$
88. Let P_{1} and P_{2} be projections on a Hilbert space H and let $Y_{1}=P_{1}(H)$ and $Y_{2}=P_{2}(H)$. If the sum $P=P_{1}+P_{2}$ is a projection, P projects H onto
A. $Y_{2} \cap Y_{1}^{\perp}$
B. $Y_{1} \cap Y_{2}$
C. $Y_{1} \oplus Y_{2}$
D. $Y_{1} \cup Y_{2}$
89. Let P_{1} and P_{2} be projections on a Hilbert space H and let $Y_{1}=P_{1}(H)$ and $Y_{2}=P_{2}(H)$. If the difference $P=P_{2}-P_{1}$ is a projection, P projects H onto
A. $Y_{2} \cap Y_{1}^{\perp}$
B. $Y_{1} \cap Y_{2}$
C. $Y_{1} \oplus Y_{2}$
D. $Y_{1} \cup Y_{2}$
90. Let P be a projection on a Hilbert space H and let $Y=P(H)$. Which one of the following is false?
A. Y^{\perp} is the null space of P
B. $I-P$ also projects H onto Y
C. $\left.P\right|_{Y}$ is the identity operator on Y
D. Y is a closed subspace of H
91. Which one of the following is correct?
A. The sum of positive operators is positive.
B. The product of positive operators is positive.
C. The difference of positive operators is positive.
D. None of these
92. For any bounded self-adjoint linear operator T on a complex Hilbert space $H,\|T\|=$
A. $\inf _{\|x\| \neq 1}|\langle T x, x\rangle|$
B. $\sup |\langle T x, x\rangle|$
$\|x\|=1$
C. $\sup \langle T x, x\rangle$
$\|x\|=1$
D. $\inf _{\|x\|=1}\langle T x, x\rangle$
93. Which of the following is not a spectral value of a bounded self-adjoint linear operator $T: H \rightarrow H$ on a complex Hilbert space H.
A. i
B. $m=\inf _{\|x\|=1}\langle T x, x\rangle$
C. $M=\sup _{\|x\|=1}\langle T x, x\rangle$
D. None of these
94. Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. The eigenvectors corresponding to different eigenvalues of T are
A. Normal
B. Orthogonal
C. In the same eigenspace
D. None of these
95. Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on a Hilbert space H and let $m=\inf _{\|x\|=1}\langle T x, x\rangle$ and $M=\sup _{\|x\|=1}\langle T x, x\rangle$. Then which one of the following is correct?
A. $\rho(T) \subset[m, M]$
B. $\rho(T) \subset(m, M)$
C. $\sigma(T) \subset[m, M]$
D. $\sigma(T) \subset(m, M)$
96. If $T: H \rightarrow H$ is a self-adjoint linear operator on a complex Hilbert space H, then $\langle T x, x\rangle$ is
A. 0
B. 1
C. Real
D. Imaginary
97. If T_{1} and T_{2} are bounded self-adjoint linear operators on a complex Hilbert space H, which of the following is equivalent to $T_{1} \leq T_{2}$
A. $0 \leq T_{2}-T_{1}$
B. $T_{2}-T_{1}$ is positive
C. $\left\langle T_{1} x, x\right\rangle \leq\left\langle T_{2} x, x\right\rangle \quad \forall x \in H$
D. All of these
98. If the product $S T$ of two positive operators S and T on a Hilbert space H is positive, if
A. S and T are bounded
B. S and T commute
C. S and T are continuous
D. None of these
99. Let H is a Hilbert space and Y is a closed subspace of H. If Y^{\perp} denotes the orthogonal complement of Y, which of the following is true?
A. $H=Y \cup Y^{\perp}$
B. $H=Y \cap Y^{\perp}$
C. $H=Y \oplus Y^{\perp}$
D. None of these
100. P is an idempotent operator if and only if
A. $P=P^{-1}$
B. $\langle P x, x\rangle$ is real
C. $P^{*}=P$
D. $P^{2}=P$

Answer Key

1. B
2. C
3. A
4. B
5. D
6. D
7. C
8. D
9. B
10. D
11. A
12. D
13. D
14. D
15. C
16. D
17. A
18. B
19. C
20. D
21. A
22. B
23. A
24. B
25. C
26. B
27. B
28. A
29. D
30. A
31. C
32. C
33. A
34. C
35. D
36. A
37. B
38. B
39. A
40. C
41. D
42. A
43. A
44. B
45. C
46. A
47. D
48. C
49. A
50. C
51. C
52. C
53. B
54. B
55. D
56. B
57. D
58. B
59. C
60. D
61. D
62. D
63. D
64. D
65. C
66. B
67. C
68. A
69. B
70. A
71. B
72. A
73. C
74. B
75. C
76. A
77. C
78. C
79. B
80. A
81. A
82. D
83. C
84. D
85. D
86. D
87. B
88. C
89. A
90. B
91. A
92. B
93. A
94. B
95. C
96. C
97. D
98. B
99. C
100. D
