PG SEMESTER III-ME010303 :MULTIVARIATE CALCULUS AND INTEGRAL TRANSFORMS Multiple Choice Questions Module I

- 1. Weiestrass Approximation theorem approximates a function to a
 - (a) Polynomial function
 - (b) Cubic function
 - (c) Trigonometric function
 - (d) None of the above
- 2. Fourier integral theorem assumes the underlying function to be
 - (a) Lebesgue integrable
 - (b) Riemann integrable
 - (c) Both of the above
 - (d) None of the above
- 3. In order to take a convolution if two functions **f** and **g** , both of them should be
 - (a) Lebesgue integrable
 - (b) Riemann integrable
 - (c) Both of the above
 - (d) None of the above
- 4. Convolution of f and g is defined as
 - (a) $\int_0^\infty f(t)g(x-t)dt$
 - (b) $\int_{-\infty}^{\infty} f(t)g(x-t)dt$
 - (c) $\int_{-\infty}^{\infty} f'(t)g(x-t)dt$
 - (d) $\int_{-\infty}^{\infty} f(t)g'(x-t)dt$
- 5. Fourier transform of convolution of two functions is,
 - (a) Convolution of Fourier transforms.

- (b) Integral of Fourier transforms.
- (c) Product of Fourier transforms.
- (d) None of the above.
- 6. $\int_0^1 x^{p-1} (1-x)^{q-1} dx =$
 - (a) $\frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$
 - (b) $\frac{\Gamma(p) + \Gamma(q)}{\Gamma(p+q)}$

 - (c) $\frac{\Gamma(p)\Gamma(q)}{\Gamma(pq)}$ (d) $\frac{\Gamma(p)-\Gamma(q)}{\Gamma(p+q)}$
- 7. Fourier integral theorem assumes
 - (a) f is of bounded variation
 - (b) f(x+) and f(x-) exist
 - (c) Both f(x+) and f(x-) are Lebesgue integrals
 - (d) All of the above
- 8. In $\int_{-\infty}^{\infty} K(x,y) f(x) dx, K(x,y)$ is known as
 - (a) The constant
 - (b) The integrant
 - (c) The integral
 - (d) The Kernel
- 9. Which of the following expressions are integral transforms of f? (i) $\int_{-\infty}^{\infty} e^{-ixy} f(x) dx$ (ii) $\int_{0}^{\infty} cosxy f(x) dx$ (iii) $\int_{0}^{\infty} sinxy f(x) dx$ (iv) $\int_{0}^{\infty} e^{-xy} f(x) dx$
 - (a) (i) and (iv)
 - (b) (ii) and (iii)
 - (c) (i),(ii),(iii) and (iv)
 - (d) (ii),(iii) and (iv)
- 10. Which of the following is the exponential Fourier transform
 - (a) $\int_{-\infty}^{\infty} e^{-ixy} f(x) dx$ (b) $\int_0^\infty \cos xy f(x) dx$ (c) $\int_0^\infty sinxyf(x)dx$ (d) $\int_0^\infty e^{-xy} f(x) dx$
- 11. Which of the following is the Fourier cosine transform

- (a) $\int_0^\infty e^{-ixy} f(x) dx$
- (b) $\int_0^\infty \cos xy f(x) dx$
- (c) $\int_0^\infty sinxy f(x) dx$
- (d) $\int_0^\infty e^{-xy} f(x) dx$

12. Which of the following is the Fourier sine transform

- (a) $\int_0^\infty e^{-ixy} f(x) dx$
- (b) $\int_0^\infty cosxyf(x)dx$
- (c) $\int_0^\infty sinxyf(x)dx$
- (d) $\int_0^\infty e^{-xy} f(x) dx$

13. Which of the following is the Laplace transform

- (a) $\int_0^\infty e^{-ixy} f(x) dx$
- (b) $\int_0^\infty \cos xy f(x) dx$
- (c) $\int_0^\infty sinxy f(x) dx$
- (d) $\int_0^\infty e^{-xy} f(x) dx$

14. Which of the following is the Mellin transform

- (a) $\int_0^\infty e^{-ixy} f(x) dx$
- (b) $\int_0^\infty cosxyf(x)dx$
- (c) $\int_0^\infty sinxyf(x)dx$
- (d) $\int_0^\infty x^{y-1} f(x) dx$
- 15. When we take convolution of two functions, discontinuities of both functions,
 - (a) Will vanish
 - (b) Will continue to exist
 - (c) Type of continuity changes
 - (d) Merge and becomes one discontinuity.
- 16. A convolution integral become bounded if
 - (a) $f \in L^2(R)$
 - (b) $g \in L^2(R)$
 - (c) Both a and b.
 - (d) Neither a nor b.
- 17. What is the boundedness assumption of the convolution theorem,

- (a) Both f and g are continuous
- (b) At least one of them is continuous
- (c) One of them is a bounded variation
- (d) Both are bounded variations

18. A convolution is

- (a) An integral function
- (b) Product of two function
- (c) Composition of two functions
- (d) None of the above
- 19. Which one the following is the notation for convolution of two functions.
 - (a) fog
 - (b) *f.g*
 - (c) f * g
 - (d) $\int fg$
- 20. Let z(t) = x(t) * y(t), where "*" denotes convolution. Let c be a positive real-valued constant. Choose the correct expression for z(ct)
 - (a) $c \cdot x(ct) * y(ct)$
 - (b) x(ct) * y(ct)
 - (c) $c \cdot x(t) * y(ct)$
 - (d) $c \cdot x(ct) * y(t)$
- 21. According to Fourier integral theorem we have the formula
 - (a) $\frac{f(x+)+f(x-)}{2} = \lim_{\alpha \to +\infty} \frac{1}{\pi} \int_0^\alpha \left[\sum_{-\infty}^\infty f(u) \cos v(u-x) du \right] dv$
 - (b) $\frac{f(x+)+f(x-)}{2} = \lim_{\alpha \to +\infty} \frac{1}{2\pi} \int_0^\alpha \left[\sum_{-\infty}^\infty f(u) \cos v(u-x) du \right] dv$
 - (c) $\frac{f(x+)+f(x-)}{2} = \lim_{\alpha \to +\infty} \pi \int_0^\alpha \left[\sum_{-\infty}^\infty f(u) \cos v(u-x) du \right] dv$
 - (d) None of the above
- 22. An integral operator is always
 - (a) a linear operator
 - (b) a polynomial operator
 - (c) a nonlinear operator
 - (d) none of the above

23. We have the Fourier transform $f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(\frac{2\pi nx}{p}) + b_n \sin(\frac{2\pi nx}{p}) \right)$. Then

(a) $a_n = \frac{2}{p} \int_0^p f(t) \cos \frac{2\pi nt}{p} dt$ (b) $a_n = \frac{2}{p} \int_0^p f(t) \sin \frac{2\pi nt}{p} dt$ (c) $a_n = \frac{p}{2} \int_0^p f(t) \cos \frac{2\pi nt}{p} dt$ (d) $a_n = \frac{p}{2} \int_0^p f(t) \sin \frac{2\pi nt}{p} dt$

24. We have the Fourier transform $f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(\frac{2\pi nx}{p}) + b_n \sin(\frac{2\pi nx}{p}) \right)$. Then

- (a) $b_n = \frac{2}{p} \int_0^p f(t) \cos \frac{2\pi nt}{p} dt$ (b) $b_n = \frac{2}{p} \int_0^p f(t) \sin \frac{2\pi nt}{p} dt$ (c) $b_n = \frac{p}{2} \int_0^p f(t) \cos \frac{2\pi nt}{p} dt$ (d) $b_n = \frac{p}{2} \int_0^p f(t) \sin \frac{2\pi nt}{p} dt$
- 25. A Fourier transform generally breaks a function into
 - (a) sine function
 - (b) cosine function
 - (c) a linear combination of (a) and (b)
 - (d) a sum of (a) and (b)
- 26. The inversion formula for Fourier Transform is given by
 - (a) $f(x) = \lim_{\alpha \to +\infty} \frac{1}{\pi} \int_{-\alpha}^{+\alpha} g(u) e^{ixu} du$
 - (b) $f(x) = \lim_{\alpha \to +\infty} \pi \int_{-\alpha}^{+\alpha} g(u) e^{ixu} du$
 - (c) $f(x) = \lim_{\alpha \to +\infty} 2\pi \int_{-\alpha}^{+\alpha} g(u) e^{ixu} du$
 - (d) $f(x) = \lim_{\alpha \to +\infty} \frac{1}{2\pi} \int_{-\alpha}^{+\alpha} g(u) e^{ixu} du$

Module 2

- 27. Pick the correct statement from the following
 - (a) Existence of all the partial derivatives $\mathbf{D}_1 \mathbf{f}, \mathbf{D}_2 \mathbf{f}, \mathbf{D}_3 \mathbf{f}, ..., \mathbf{D}_n \mathbf{f}$ of a function \mathbf{f} at a particular point does not necessarily imply continuity of \mathbf{f} at that point.
 - (b) The partial derivative describes the rate of change of a function in the direction of each coordinate axis.
 - (c) The directional derivative is the rate of change of a function in an arbitrary direction

- (d) All of the above
- 28. Let **f** be a linear function. Then the directional derivative of **f** at the point c in the direction of the unit vector $\mathbf{u}(\mathbf{u} \neq 0)$ is
 - (a) **f**(**u**)
 - (b) 0
 - (c) $\mathbf{f}'(\mathbf{u})$
 - (d) 1

29. Consider the function $f : R^2 \to R$ given by $f(x,y) = \begin{cases} x+y & \text{if } x=0 \text{ or } y=0\\ 1 & otherwise \end{cases}$ Then $D_1f(0,0), D_2f(0,0)$ is (a) 0,0 (b) 0,1 (c) 1,1 (d) x,y

- 30. The directional derivative of the function f at a point c in the direction of the vector u, where u=0 is
 - (a) f(u)
 - (b) 0
 - (c) f'(u)
 - (d) 1
- 31. Choose the correct statement
 - (a) If the directional derivative of a function f exists for every direction u, then all the partial derivatives exists.
 - (b) If all the partial derivatives of a function f exists, then the directional derivative of f exists for every direction u.
 - (c) If the directional derivative of a function f exists at a point c then f is continuous at c.
 - (d) If existence of derivative of a function f at a point c doesnot imply the continuity of a function of that point.
- 32. The total derivative of a linear function is
 - (a) zero

- (b) its derivative
- (c) its partial derivative
- (d) the function itself
- 33. If the total derivative of a function f exists, it is
 - (a) unique
 - (b) a real number
 - (c) finite
 - (d) None of the the above
- 34. If the total derivative of a function f exists, then
 - (a) it is equal to the directional derivative.
 - (b) it is unique
 - (c) it is not unique
- 35. Cauchy-Reimann equation is
 - (a) $D_1u(c) = D_1v(c), D_2u(c) = D_2v(c)$
 - (b) $D_1u(c) = D_2u(c), D_1v(c) = -D_2v(c)$
 - (c) $D_1u(c) = D_2v(c), D_1v(c) = -D_2u(c)$
 - (d) $D_1u(c) = D_2v(c), D_1v(c) = D_2u(c)$
- 36. Let S be an open connected subset and let $f: S \to \mathbb{R}^n$ be differentiable at each c in S. If f'(c) = 0 for each c in S, then f is
 - (a) constant
 - (b) continuous
 - (c) linear
 - (d) all of the above
- 37. Let $f = (f_1, f_2)$ be a function in \mathbb{R}^2 which is differentiable at a point c in \mathbb{R}^2 . Then the Jacobian matrix of f at c is

(a)
$$\begin{bmatrix} D_1 f_1(c) & D_2 f_2(c) \\ D_1 f_2(c) & D_2 f_1(c) \end{bmatrix}$$

(b)
$$\begin{bmatrix} D_1 f_1(c) & D_2 f_1(c) \\ D_1 f_2(c) & D_2 f_2(c) \end{bmatrix}$$

(c)
$$\begin{bmatrix} D_1 f_2(c) & D_2 f_2(c) \\ D_1 f_1(c) & D_2 f_1(c) \end{bmatrix}$$

(d)
$$\begin{bmatrix} D_1 f_1(c) & D_1 f_2(c) \\ D_2 f_1(c) & D_2 f_2(c) \end{bmatrix}$$

38. Jacobian matrix of the function $f(x, y) = (x^2 - y^2, 2xy)$ at (1, 1) is

(a) $\begin{bmatrix} 2 & -2 \\ 2 & 2 \end{bmatrix}$ (b) $\begin{bmatrix} 2 & 2 \\ -2 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 2 & 2 \\ 2 & -2 \end{bmatrix}$

39. The gradient of the function $f(x, y) = x(x^2 - y^2) - z$ is

- (a) $(3x^2, -2y, -1)$ (b) $(x^2 - y^2, -xy^2, -z)$
- (c) $(x^2 2y, 2xy, -1)$
- (d) $(3x^2 y^2, -2xy, -1)$

40. The gradient vector of the function $f(x, y, z) = 2x^2 + 3y^2 + z^2 - 11$ at (1, 0, 3) is

- (a) (2,0,9)
- (b) (4, 0, 6)
- (c) (-7, -11, -5)
- (d) (4, 6, 11)
- 41. The directional derivative of f(x, y, z) = xyz at the point (-1, 1, 3) in the direction of the vector i 2j + 2k is
 - (a) 7/3
 - (b) 7
 - (c) -7/3
 - (d) -3

42. The directional derivative of the scalar function $f(x, y, z) = x^2 + 2y^2 + z$ at the point P = (1, 1, 2) in the direction of the vector $\vec{a} = 3i - 4j$ is

- (a) -4
- (b) -2
- (c) -1

(d) 1

43. The partial derivatives $D_1 f$ and $D_2 f$ of the function $f(x, y) = x^4 + y^4 - 4x^2y^2$ is

- (a) $4x^3, 4y^3$
- (b) x^4, y^4
- (c) $4x^3 4x^2, 4y^3 4y^2$
- (d) $4x^3 8xy^2, 4y^3 8x^2y$
- 44. The partial derivatives $D_1 f$ and $D_2 f$ of the function $f(x, y) = log(x^2 + y^2), (x, y) \neq (0, 0)$ is
 - (a) x^2, y^2 (b) $\frac{2x}{x^2+y^2}, \frac{2y}{x^2+y^2}$ (c) $\frac{1}{x^2+y^2}, \frac{1}{x^2+y^2}$ (d) $\frac{2}{x^2+y^2}, \frac{2}{x^2+y^2}$
- 45. If the Cauchy-Reimann equations are true, then the derivative of the function f at a point c is
 - (a) $f'(c) = D_1 u(c) + i D_1 v(c)$
 - (b) $f'(c) = D_1 v(c) + i D_1 u(c)$
 - (c) $f'(c) = D_2 v(c) i D_2 u(c)$
 - (d) Both (a) and (c)

46. If
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2+y^4} & \text{if } x \neq 0\\ 0 & \text{if } x = 0\\ \text{then } f(x,y) \text{ is } \end{cases}$$

- (a) continuous and directional derivative exists at origin.
- (b) not continuous at origin but the directional derivative exists at origin.
- (c) continuous but directional derivative does not exist at origin.
- (d) neither continuous nor directional derivative exists at origin.

47. Jacobian matrix of the function $f(x, y, z) = (e^{xy} + z, x^2yz, xyz)$

(a)
$$\begin{bmatrix} ye^{xy} & 2xyz & yz \\ xe^{xy} & x^2z & xz \\ 1 & x^2y & xy \end{bmatrix}$$

(b)
$$\begin{bmatrix} ye^{xy} & xe^{xy} & 1 \\ 2xyz & x^2z & x^2y \\ yz & xz & xy \end{bmatrix}$$

(c)
$$\begin{bmatrix} e^{xy} & e^{xy} & 1\\ yz & x^2z & x^2y\\ yz & xz & xy \end{bmatrix}$$

(d)
$$\begin{bmatrix} ye^{xy} & xe^{xy} & 1\\ x^2y & 2xyz & x^2z\\ xy & yz & xz \end{bmatrix}$$

- (a) $f(x, y) = (x^2 + y^2, 2xy)$ (b) f(x, y) = (sinxcosy, cosxsiny)(c) $f(x, y) = (e^x cosy, e^x siny)$ (d) $f(x, y) = (xyz, \frac{xy^2z}{2})$
- 49. The partial derivatives $D_1 f$ and $D_2 f$ of the function $f(x, y) = y^2 e^x + x^2 y^3 + 16$ at (1, 2) is....
 - (a) 4e + 16, 4e + 12
 - (b) 4e + 8, 4e + 16
 - (c) $2e^2 + 8, 2e^2 + 16$
 - (d) $4e^2, 8e^2$

50. Gradient vector of the function $f(x,y) = \frac{x^2}{2} + \frac{y^2}{2}$ at (1,1) is

- (a) $(\frac{1}{2}, \frac{1}{2})$
- (b) (2,2)
- (c) (1,1)
- (d) $(\frac{1}{2}, \frac{-1}{2})$
- 51. The direction of $f(x,y) = x^2 + xy$ at $P_0(1,2)$ in the direction of the unit vector $u = \frac{1}{\sqrt{2}}i + \frac{1}{\sqrt{2}}j$ is
 - (a) $\sqrt{2}$
 - (b) $\frac{3}{\sqrt{2}}$
 - (c) $\frac{5}{\sqrt{2}}$
 - (d) 2

52. If $f: \mathbb{R}^n \to \mathbb{R}^m$ is a real valued function, then the Jacobian matrix consists of

- (a) only one column
- (b) only one row
- (c) both (a) and (b)

- (d) none of the above.
- 53. The k^{th} row of the Jacobian matrix is a vector in \mathbb{R}^n called
 - (a) the gradient vector of f_k
 - (b) constant vector of f_k
 - (c) unit vector of f_k
 - (d) none of the above

54. If $f(x) = ||x^2||$ and F(t) = f(c+tu), then $F'(0) = \dots$

- (a) 0
- (b) 2c
- (c) 2*c*.*u*
- (d) none of the above
- 55. If g is differentiable at a with total derivative g'(a) and f is differentiable at b = g(a) with total derivative f'(b), then $h = f \circ g$ is differentiable at a with the total derivative $h'(a) = \dots$
 - (a) $f(b) \circ g'(a)$.
 - (b) $f'(b) \circ g(a)$.
 - (c) $g'(b) \circ f'(a)$.
 - (d) $f'(b) \circ g'(a)$.
- 56. If g is differentiable at a and f is differentiable at b = g(a), then the matrix form of the chain rule for $h = f \circ g$ is ...
 - (a) D(h(a)) = D(g(a)D(f(b))).
 - (b) D(h(a)) = D(f(a)D(g(b)).
 - (c) D(h(a)) = D(f(b)D(g(a))).
 - (d) D(h(a)) = D(g(b)D(f(a))).
- 57. If $x, y \in \mathbb{R}^n$, then L(x, y) denotes
 - (a) $\{tx + (1-t)y : 0 \le t \le 1\}$
 - (b) $\{tx + (1-t)y : 0 < t < 1\}$
 - (c) $\{x + (1-t)y : 0 \le t \le 1\}$
 - (d) {tx + (1-t)y : 0 < t < 1}
- 58. By Mean-value theorem, if S be an open subset of \mathbb{R}^n and $f: S \to \mathbb{R}^m$ is differentiable at each point of S then :

- (a) there exists a vector a in \mathbb{R}^m and a point z in L(x, y) such that $a \cdot \{f(y) f(x)\} = a \cdot \{f'(z)(y x)\}$, for any two points x and y in S.
- (b) for every vector a in \mathbb{R}^m and a point z in L(x, y) such that $a \cdot \{f(y) f(x)\} = a \cdot \{f'(z)(y x)\}$, for any two points x and y in S such that $L(x, y) \subset S$.
- (c) there is a point z in L(x, y) such that $\{f(y) f(x)\} = f'(z)$, for any two points x and y in S.
- (d) there exist two points x and y in S and a point z in L(x, y) such that $\{f(y) f(x)\} = f'(z)(y x)$.
- 59. If S be an open convex subset of \mathbb{R}^n and $f: S \to \mathbb{R}^m$ is differentiable at each point of S then :
 - (a) there exists a vector a in \mathbb{R}^m and a point z in L(x, y) such that $a \cdot \{f(y) f(x)\} = a \cdot \{f'(z)(y-x)\}$, for any two points x and y in S.
 - (b) for every vector a in \mathbb{R}^m and a point z in L(x, y) such that $a \cdot \{f(y) f(x)\} = a \cdot \{f'(z)(y x)\}$, for any two points x and y in S such that $L(x, y) \subset S$.
 - (c) there is a point z in L(x, y) such that $\{f(y) f(x)\} = f'(z)$, for any two points x and y in S.
 - (d) there exist two points x and y in S and a point z in L(x, y) such that $\{f(y) f(x)\} = \{f'(z)(y-x)\}$.
- 60. Let S be and open connected subset of \mathbb{R}^n , and let $f: S \to \mathbb{R}^m$ be differentiable at each point of S then the necessary condition for f to be a constant on S is
 - (a) f'(c) = 0 for each c in S.
 - (b) $f'(c) \neq 0$ for each c in S.
 - (c) f is continuously differentiable.
 - (d) first derivative f' is continuous
- 61. Let S be and open connected subset of \mathbb{R}^n , and let $f: S \to \mathbb{R}^m$ be differentiable at each point of S with f'(c) = 0 for each c in S then
 - a) **f** is a constant on S
 - b) for every vector **a** there exists an z such that $\mathbf{a} \cdot \mathbf{f}'(z) = \mathbf{a}$
 - c) \mathbf{f} is continuously differentiable on S.
 - d) first derivative f' is continuous

Module 3

- 62. A sufficient condition for $D_{r,k}f(c) = D_{k,r}f(c)$ is
 - a) one of the partial derivatives $D_r f$ and $D_k f$ exists in an *n* ball $B(c; \delta)$ and are differentiable at c
 - b) both the partial derivatives $D_r f$ and $D_k f$ exists in an *n* ball $B(c; \delta)$ and if both are continuous at c
 - c) both the partial derivatives $D_r f$ and $D_k f$ exists in an *n* ball $B(c; \delta)$ and if both are differentiable at c
 - d) None of the above
- 63. A sufficient condition for $D_{r,k}f(c) = D_{k,r}f(c)$ is
 - a) one of the partial derivatives $D_r f$ and $D_k f$ exists in an *n* ball $B(c; \delta)$ and are differentiable at c
 - b) both the partial derivatives $D_r f$ and $D_k f$ exists in an *n* ball B(c) and if both $D_{r,k}f(c)$ and $D_{k,r}f(c)$ are continuous at c
 - c) both the partial derivatives $D_r f$ and $D_k f$ exists in an *n* ball $B(c; \delta)$ and if both are differentiable at c
 - d) Both (b) and (c) are sufficient conditions
- 64. If f = u + iv is a complex valued function with a derivative at a point z in C, then
 - a) $J_f(z) = |f'(z)|^2$.
 - b) $J_f(z) = |f^2(z)|$.
 - c) $J_f(z) = |f'(z)^2|$.
 - d) $J_f(z) = |f(z)|^2$.

65. If $f(x,y) = (xe^y, xy)$ then the Jacobian determinant is

- a) xye^y
- b) xe^y
- c) xy^2e^y
- d) $x(1-y)e^{y}$

66. If f = u + iv then the Jacobian determinant is

- a) $D_1 u D_1 v D_2 v D_2 u$
- b) $D_1 u D_1 v D_2 u D_2 v$
- c) $D_1 u D_2 v D_1 v D_2 u$
- d) $D_2 u D_2 v D_1 u D_1 v$

- 67. Let $f: S \to R$ be a real valued function. Assume that f is continuous on a compact subset X of S. Then there exist points p and q in X such that
 - a) $f(p) = \sup f(X)$ and $f(q) = \sup f(X)$. b) $f(p) = \inf f(X)$ and $f(q) = \sup f(X)$. c) $f(p) = \operatorname{Max} f(X)$ and $f(q) = \operatorname{Min} f(X)$. d) f(p) = f(X) and f(q) = 0.
- 68. The bountary ∂B of an *n*-ball B = B(a; r) is given by
 - a) $\partial B = \{X : |x a| = r\}$
 - b) $\partial B = \{X : ||x a|| = r\}$
 - c) $\partial B = \{X : |x a| < r\}$
 - d) $\partial B = \{X : ||x a|| < r\}$

69. A function $f: S \to T$ is called an open mapping if,

- a) for every open set A in S, the image f(A) is open in T.
- b) for every set A in S, the image f(A) is open in T.
- c) for every open set A in T, the inverse image $f^{-1}(A)$ is open in S.
- d) for every set A in T, the inverse image $f^{-1}(A)$ is open in S.
- 70. Let A be an open subset of \mathbb{R}^n and assume that $f : A \to \mathbb{R}^n$ is continuous and has finite partial derivatives $D_j f_i$ on A then the sufficient condition for f(A) to be open is
 - a) f is continuous on A and if $J_f(x) \neq 0$ for each $x \in A$
 - b) f is onto on A and if $J_f(x) \neq 0$ for each $x \in A$
 - c) f is one to one on A and if $J_f(x) \neq 0$ for each $x \in A$
 - d) none of the above
- 71. Let A be an open subset of \mathbb{R}^n and assume that $f : A \to \mathbb{R}^n$ is continuous and has finite partial derivatives $D_j f_i$ on A. If f is one to one on A and if $J_f(x) \neq 0$ for each $x \in A$, then
 - a) f(A) is closed
 - b) f(A) is open
 - c) f(A) is both open and closed
 - d) All of the above
- 72. Assume that $f = (f_1, f_2, \ldots, f_n)$ has continuous partial derivatives $D_j f_i$ on an open set S in \mathbb{R}^n , and that the Jacobian determinant $J_f(a) \neq 0$ for some point a in S then

- a) there is an *n*-ball B(a) on which f is one to one.
- b) f is one to one on S.
- c) f is onto
- d) None of the above
- 73. Let A be an open subset of \mathbb{R}^n and assume that $f : A \to \mathbb{R}^n$ has continuous partial derivatives $D_j f_i$ on A and if $J_f(x) \neq 0$ for all x in A, then
 - a) $f: A \to \mathbb{R}^n$ has continuous partial derivatives $D_j f_i$ on A
 - b) $J_f(x) \neq 0$ for all x in A
 - c) f is an open mapping
 - d) All of the above
- 74. Let A be an open subset of \mathbb{R}^n and assume that $f : A \to \mathbb{R}^n$ has continuous partial derivatives $D_j f_i$ on A then the sufficient condition for f to be an open mapping is
 - a) $f: A \to \mathbb{R}^n$ has continuous partial derivatives $D_j f_i$ on A
 - b) $J_f(x) \neq 0$ for all x
 - c) both (a) and (b)
 - d) none of the above
- 75. If a function $f = (f_1, \ldots, f_n)$ has continuous partial derivatives on a set S, then we say that
 - a) f is continuously differentiable on S
 - b) f is differentiable on S
 - c) f has total derivative on S
 - d) None of the above
- 76. Assume that the second order partial derivatives $D_{i,j}$ exist in an n-ball B(a) and are continuous at a stationary point a of f and let $Q(t) = \frac{1}{2}f''(a;t)$. Then f has a relative minimum at a if
 - (a) Q(t) < 0 for all $t \neq 0$.
 - (b) Q(t) > 0 for all $t \neq 0$.
 - (c) Q(t) = 0 for all $t \neq 0$.
 - (d) Q(t) takes both positive and negative values.
- 77. Assume that the second order partial derivatives $D_{i,j}$ exist in an n-ball B(a) and are continuous at a stationary point a of f and let $Q(t) = \frac{1}{2}f''(a;t)$. Then f has a relative maximum at a if

- (a) Q(t) < 0 for all $t \neq 0$.
- (b) Q(t) > 0 for all $t \neq 0$.
- (c) Q(t) = 0 for all $t \neq 0$.
- (d) Q(t) takes both positive and negative values.
- 78. Assume that the second order partial derivatives $D_{i,j}$ exist in an n-ball B(a) and are continuous at a stationary point a of f and let $Q(t) = \frac{1}{2}f''(a;t)$. Then f has a saddle point at a if
 - (a) Q(t) < 0 for all $t \neq 0$.
 - (b) Q(t) > 0 for all $t \neq 0$.
 - (c) Q(t) = 0 for all $t \neq 0$.
 - (d) Q(t) takes both positive and negative values.
- 79. Let f be a real valued function with continuous second order partial derivatives at a stationary point a in R^2 and let $\Delta = AC B^2$, where $A = D_{1,1}f(a), B = D_{1,2}f(a), C = D_{2,2}f(a)$. Then f has a relative minimum at a if
 - (a) if $\Delta > 0$ and A < 0.
 - (b) if $\Delta > 0$ and A > 0.
 - (c) if $\Delta < 0$ and A < 0.
 - (d) if $\Delta < 0$ and A > 0.
- 80. Let f be a real valued function with continuous second order partial derivatives at a stationary point a in R^2 and let $\Delta = AC B^2$, where $A = D_{1,1}f(a)$, $B = D_{1,2}f(a)$, $C = D_{2,2}f(a)$. Then f has a relative maximum at a if
 - (a) if $\Delta > 0$ and A < 0.
 - (b) if $\Delta > 0$ and A > 0.
 - (c) if $\Delta < 0$ and A < 0.
 - (d) if $\Delta < 0$ and A > 0.
- 81. Let f be a real valued function with continuous second order partial derivatives at a stationary point a in R^2 and let $\Delta = AC B^2$, where $A = D_{1,1}f(a)$, $B = D_{1,2}f(a)$, $C = D_{2,2}f(a)$. Then f has a saddle point at a if
 - (a) if $\Delta > 0$ and A < 0.
 - (b) if $\Delta > 0$ and A > 0.
 - (c) if $\Delta < 0$.
 - (d) if $\Delta > 0$.
- 82. A quadratic form $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j$ is negative definite if

- (a) $x \neq 0 \Rightarrow Q(x) \le 0$. (b) $x < 0 \Rightarrow Q(x) < 0$.
- (c) $x \neq 0 \Rightarrow Q(x) < 0.$
- (d) $x \neq 0 \Rightarrow Q(x) < 0.$

83. A quadratic form $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j$ is positive definite if

- (a) $x \neq 0 \Rightarrow Q(x) \ge 0.$
- (b) $x > 0 \Rightarrow Q(x) > 0$.
- (c) $x \neq 0 \Rightarrow Q(x) \ge 0.$
- (d) $x \neq 0 \Rightarrow Q(x) > 0.$
- 84. Which of the following is not a quadratic form in \mathbb{R}^n ?
 - (a) $x_1^2 + x_2^2 + \dots + x_n^2$
 - (b) $\sum_{i=1}^{3} \sum_{j=1}^{3} a_{ij} x_i x_j$, where a_{ij} are constants.
 - (c) $x_1x_2 + x_2x_3 + \dots + x_nx_{n+1}$
 - (d) None of the above

Module 4

- 85. A linear operator B on \mathbb{R}^n that interchanges some pair of members of the standard basis and leaves the others fixed is called.....
 - (a) k-cell
 - (b) Flip
 - (c) Primitive Map
 - (d) None of the above
- 86. Choose the correct statement from the following:
 - (a) A k- cell in \mathbb{R}^k is defined as the set of all points $\mathbf{x} = (x_1, x_2, \dots, x_k)$ such that $a_i \leq x \leq b_i, i = 1, 2, 3, \dots, k$.
 - (b) A rectangle is a 2-cell.
 - (c) A k-cell is the product of intervals of the form $[a_i, b_i], i = 1, 2, ..., k$.
 - (d) All of the above.
- 87. For every $f \in C(I^K), L(f) = \dots$
 - (a) L'(f')

- (b) L(f')
- (c) L'(f)
- (d) none of the above
- 88. Let Q^k be the k-simplex which consists of all points $\mathbf{x} = (x_1, ..., x_k)$ in \mathbb{R}^k for which $x_1 + ... + x_k \leq 1$ and $x_i \geq 0$. Then Q^3 is a
 - (a) triangle
 - (b) line Segment
 - (c) tetrahedron
 - (d) a point
- 89. Pick the correct statement(s)
 - (a) For every $f \in C(I^k)$, the order of integration is immaterial for $\int_{I_k} f(\mathbf{x}) d\mathbf{x}$.
 - (b) If f is a continuous function with a compact support, then the integral $\int_{R^k} = \int_{I_k} f$ is independent of the choice of I^k provided that I^k contains the support of f.
 - (c) Both (a) and (b)
 - (d) None of the above.

90. The closure of the set of all points $\mathbf{x} \in \mathbb{R}^k$ at which $f(\mathbf{x}) \neq 0$ is....

- (a) k-cell
- (b) unit cell
- (c) support of f
- (d) flip
- 91. The support of a real or complex function f on \mathbb{R}^k is
 - (a) The closure of the set of all points $\mathbf{x} \in \mathbb{R}^k$ at which $f(\mathbf{x}) \neq 0$.
 - (b) The closure of the set of all points $\mathbf{x} \in \mathbb{R}^k$ at which $f(\mathbf{x}) = 0$.
 - (c) The set of all points $\mathbf{x} \in \mathbb{R}^k$ at which $f(\mathbf{x}) \neq 0$.
 - (d) The of all points $\mathbf{x} \in \mathbb{R}^k$ at which $f(\mathbf{x}) = 0$.
- 92. Let G be a primitive mapping of the form $G(\mathbf{x}) = \mathbf{x} + [g(\mathbf{x}) x_m] e_m$, where g is a real function with domain E. Then G'(a) is invertible if
 - (a) $(D_m g)(a) = 0$
 - (b) $(D_m g)(a) = 1$
 - (c) $(D_m g)(a) \neq 0$
 - (d) none of the above

- 93. Let G be a primitive mapping of the form $G(\mathbf{x}) = \mathbf{x} + [g(\mathbf{x}) x_m] e_m$, where g is a real function with domain E. Then
 - (a) $J_G(a) = (D_m g)(a).$
 - (b) $(D_m g)(a) = I$
 - (c) $(D_m g)(a) \neq 0$
 - (d) none of the above
- 94. Integrals of 1- forms are called
 - (a) Integrals on I^k
 - (b) Integrals over \mathbb{R}^k
 - (c) Line Integrals
 - (d) Surface Integrals.
- 95. The support of a function f on \mathbb{R}^k is the closure of the set of all points $\mathbf{x} \in \mathbb{R}^k$ at which.....
 - (a) $f(\mathbf{x}) \neq 0$
 - (b) $f(\mathbf{x}) = 0$
 - (c) $f(\mathbf{x}) = 1$
 - (d) none of the above
- 96. Choose the correct statement from the following statements:
 - (a) Suppose E is an open set in \mathbb{R}^n . A k-surface in E is a \mathcal{C}' mapping ϕ from a compact set $D \subset \mathbb{R}^k$ into E. D is called the parameter domain of ϕ .
 - (b) A primitive mapping is the one that changes at most one coordinate.
 - (c) Both (a) and (b)
 - (d) None of these.
- 97. A k-surface in $E \subset \mathbb{R}^k$ is
 - (a) a mapping ϕ from a compact set $D \subset \mathbb{R}^k$ into E.
 - (b) a \mathcal{C}' mapping ϕ from a compact set $D \subset \mathbb{R}^k$ into E.
 - (c) a \mathcal{C}' mapping ϕ from a set $D \subset \mathbb{R}^k$ into E.
 - (d) a mapping ϕ from a compact set $D \subset \mathbb{R}^k$ into E.
- 98. Let D be the 3-cell defined by $0 \le r \le 1, 0 \le \theta \le \pi, 0 \le \phi \le 2\pi$ and define $\Phi(r, \theta, \phi) = (x, y, z)$, where $x = rsin\theta cos\phi, y = rsin\theta sin\phi, z = rcos\theta$. Then $J_{\Phi}(r, \theta, \phi) = ...$
 - (a) $rsin\theta$

- (b) $r^2 sin\theta$
- (c) $2rsin\theta$
- (d) $r^2 cos\theta$
- 99. Let D be the 3-cell defined by $0 \le r \le 1, 0 \le \theta \le \pi, 0 \le \phi \le 2\pi$ and define $\Phi(r, \theta, \phi) = (x, y, z)$, where $x = rsin\theta cos\phi, y = rsin\theta sin\phi, z = rcos\theta$. Then $\int_{\Phi} dx \wedge dy \wedge dz = ...$
 - (a) $\frac{4\pi}{3}$
 - (b) $\frac{\pi}{3}$
 - (c) 4π
 - (d) $\frac{3\pi}{4}$

100. Let ω_1, ω_2 be k-forms in E. Then $\omega_1 = \omega_2$ if and only if....

- (a) $\omega_1(\phi) = \omega_2(\phi)$ for every k-surface ϕ in E.
- (b) $\omega_1(\phi) = \omega_2(\phi)$ for some k-surface ϕ in E.
- (c) $\omega_1(\phi) = \omega_2(\phi)$ for at least one k-surface ϕ in E.
- (d) none of the above
- 101. A basic k-form in \mathbb{R}^n is of the form $dx_I = dx_{i_1} \wedge \ldots \wedge dx_{i_k}$, where I is the ordered k-tuple such that
 - (a) $1 \le i_1 \le i_2 \le \dots \le i_k \le n$.
 - (b) $1 \le i_1 < i_2 < \dots < i_k \le n$.
 - (c) $1 \ge i_1 > i_2 > \dots > i_k \ge n$.
 - (d) $1 \ge i_1 \ge i_2 \ge ... \ge i_k \le n$.
- 102. Which of the following is a basic k-form ?
 - (a) $dx_1 \wedge dx_5 \wedge dx_3$
 - (b) $dx_2 \wedge dx_3 \wedge dx_4$
 - (c) $dx_4 \wedge dx_3 \wedge dx_2$
 - (d) $dx_3 \wedge dx_2 \wedge dx_1$
- 103. The standard presentation of the 2-form $w = x_1 dx_2 \wedge dx_1 x_2 dx_3 \wedge dx_2 + x_3 dx_2 \wedge dx_3 + dx_1 \wedge dx_2$ is
 - (a) $(x_1 1)dx_1 \wedge dx_2 + (x_2 + x_3)dx_2 \wedge dx_3$
 - (b) $(x_1 1)dx_2 \wedge dx_1 + (x_2 + x_3)dx_3 \wedge dx_2$
 - (c) $(1-x_1)dx_1 \wedge dx_2 + (x_2+x_3)dx_2 \wedge dx_3$
 - (d) $(1-x_1)dx_2 \wedge dx_1 + (x_2+x_3)dx_3 \wedge dx_2$

104. Let ω be a k-form in E. Then for every k-surface Φ in E, we have

- (a) $\int_{\phi} \omega = -\int_{\phi} \omega$
- (b) $\int_{\phi} \omega = -\int_{\phi} \omega + c$ for some positive constant c.
- (c) $\int_{\phi} (-\omega) = -\int_{\phi} \omega$
- (d) $\int_{\phi} \omega = -\int_{\phi} \omega c$ for some positive constant c.

105. Which of the following is true for differential forms in \mathbb{R}^n .

- (a) $dx_i \wedge dx_i \neq 0$
- (b) $dx_i \wedge dx_i = 1$
- (c) $dx_i \wedge dx_j = dx_j \wedge dx_i$
- (d) $dx_i \wedge dx_j = -dx_j \wedge dx_i$

106. Consider the k-form $w = a(x)dx_{i_1} \wedge \ldots \wedge dx_{i_k}$. Then w=0 if

- (a) $i_1 \neq i_k$.
- (b) The subscripts $i_1, i_2, ..., i_k$ are all distinct.
- (c) Any two suffices among $i_1, i_2, ..., i_k$ are equal.
- (d) None of the above.
- 107. Which of the following is wrong?
 - (a) $dx_i \wedge dx_j = -dx_j \wedge dx_i$
 - (b) If k > n, then then the only k-form in any open subset of \mathbb{R}^n is 0.
 - (c) $dx_{i_1} \wedge ... \wedge dx_{i_k} = 0$ unless the subscripts $i_1, ..., i_k$ are all distinct.
 - (d) None of the above.