MULTIPLE CHOICE QUESTIONS

SEMESTER III - PARTIAL DIFFERENTIAL EQUATIONS

1. The partial differential equation corresponding to z = f(x + it) + g(x - it) after eliminating the arbitrary function is

A)
$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial t} = 0$$
 B) $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial t^2} = -1$ C) $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial t^2} = 0$ D) $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial t^2} = 1$

2. The partial differential equation corresponding to z = ax + by + ab eliminating the constants, where $\frac{\partial z}{\partial x} = p$, $\frac{\partial z}{\partial y} = q$ is

A)
$$z = px + qy + pq$$
 B) $z = qx + py + pq$ C) $z = px - qy$ D)) $z = px + qy$

- 3. The partial differential equation corresponding to $z = xy + f(x^2 + y^2)$ is A) $xp + yq = y^2 + x^2$ B) $yp + xq = x^2 y^2$ C) $xq yp = x^2 y^2$ D) $yp xq = y^2 x^2$
- 4. The partial differential equation corresponding to $z = f\left(\frac{xy}{z}\right)$ is

A)
$$py = qx$$
 B) $px = qy$ C) $px + qy = 0$ D) $\frac{p}{q} = xy$

- 5. The general integral of the linear partial differential equation $y^2p xyq = x(z 2y)$ is A) $F(x^2 + y^2, y^2 yz) = 0$ B) $F(xy, x^2 y^2) = 0$ C) $F(y z, (x y)^2) = 0$ D) $F(x^2 + y^2, y 2z) = 0$
- 6. The general integral of the linear partial differential equation $(y + zx)p (x + yz)q = x^2 y^2$

A)
$$F(x^2 + y^2 - z^2, xy) = 0$$
 B) $F(xy + z, x^2 - z^2) = 0$
C) $F(xyz, xy + z) = 0$ D) $F(x^2 + y^2 - z^2, xy + z) = 0$

- 7. The general integral of the linear partial differential equation $pz qz = z^2 + (x + y)^2$ is A) $F(x + y, \log(x^2 + y^2 + z^2 + 2x) 2x) = 0$ B) $F(x y, \log(x^2 2y)) = 0$ C) $F(xy, \log(x^2 + y^2 + z^2)) = 0$ D) $F(x + y, \log(x^2 + y^2 + z^2)) = 0$
- 8. The general integral of yzp + xzq = xy is A) $F(x^2 + y^2, z^2 + y^2) = 0$ B) $F(x^2 y^2, z^2 + y^2) = 0$ C) $F(x^2 + y^2, y^2 z^2)$ D) $F(x^2 y^2, z^2 y^2) = 0$
- 9. The integral of the Pfaffian differential equation ydx + xdy + 2zdz = 0 is A)u(x, y, z) = xy + c B) $u(x, y, z) = xy + z^2 + c$ C)u(x, y, z) = xyz + c D) $u(x, y, z) = x^2 + y^2 + z^2 + c$
- 10. A necessary and sufficient condition that the Pfaffian differential equation X. dr=0 should be integrable is that

A)
$$X$$
. $Curl X \neq 0$ B) X . $Curl X = 1$ C) X . $Curl X = 0$ D) X . $Curl X \neq 1$

11. The integral of yzdx + 2xzdy - 3xydz = 0

A)
$$u = \frac{xy^2}{z}$$
 B) $u = \frac{xy^2}{z^3}$ C) $u = xyz$ D) $u = xy + z^2$

12. The Pfaffian differential equation X. dr = P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz = 0 is exact if and only if

1

A)
$$Curl X \neq 0$$
 B) $Curl X = 0$ C) $Curl X = 1$ D) $None$

- 13. The partial differential equation $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z$ is
 - A) linear B) semilinear C)quasilinear D) nonlinear

14. he solution of a(p+q)=z is

A)
$$F(x + y, y + az) = 0$$
 B) $F(y - x, ay) = 0$ C) $F(x + y, z) = 0$
D) $F(x - y, y - az) = 0$

- 15. Given a surface F(x, y, z) = 0. The system of orthogonal trajectories on the surface of given system of curves each of which lies on the surface and cuts every curve of the given system at
 - A) at an acute angle B) parallel to F(x, y, z) = 0 C) right angle D)None

16. The integral curve satisfies the set of equations
$$\frac{dx}{x^2(y^3-z^3)} = \frac{dy}{y^2(z^3-x^3)} = \frac{dz}{z^2(x^3-y^3)}$$
 is
$$A)x^2-y^2-z^2=c \quad B)-x^2+y^2-z^2=c \quad C)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=c \quad D)\frac{1}{x^2}-\frac{1}{y^2}-\frac{1}{z}=c$$

17. The orthogonal trajectory on the cylinder $y^2 = z$ of the curves in which it is cut by the system of planes x + z = c is

A)
$$\frac{y^2}{z} = c$$
 B) $\frac{x^2}{z} = c$ C) $\frac{y}{z^2} = c$ D) $\frac{y}{z} = c$

- 18. If X is a vector such that X. Curl X = 0 and μ is an arbitrary function of x, y, z then
 - A) X. Curl $\mu X \neq 0$ B) μX . Curl $\mu X = 0$ C) μX . Curl $\mu X = 0$ D) X. Curl $\mu X = 0$
- 19. If one integrating factor of a Pfaffian differential equation is given
 - A) we can find another integrating factor
 - B) we can find infinity of them
 - C) we cannot find any other integrating factor
 - D)we can find only finite number of integrating factors
- 20. A system of curves each of which lie on the given surface and cuts every curve of the given system at right angles are called
 - A) integral curves B) system of equations C) orthogonal trajectories D) None
- 21. A Pfaffian differential equation in two variables always possess
 - A) general integral B) integrating factor C) complete integral D) particular integral
- 22. A necessary and sufficient condition that there exists between two functions u(x, y) and v(x, y)a relation F(u, v) = 0 not involving x and y explicitly is that

A)
$$\frac{\partial(u,v)}{\partial(x,y)} = 0$$
 B) $\frac{\partial(x,y)}{\partial(u,v)} = 0$ C) $\frac{\partial F(u,v)}{\partial(x,y)} = 0$ D) $\frac{\partial(u,v)}{\partial(F(x,y))} = 0$

23. A Pfaffian differential equation (y + z)dx + dy + dx = 0 satisfies X. Curl X = 0 then it's primitive is

$$A(x) + \log y + \log z = c \quad B(x) + \log(x + y + z) = c$$

$$C(x) + \log(y+z) = c \quad D(\log(y+z) + y + z) = c$$

24. The primitive of the differential equation is yzdx + xzdy + xydz = 0 is

$$A)yz + xz + xy = c \qquad B)y + x + z = c \qquad C)yz + x + y = c \qquad D)xyz = c$$

- 25. The integral curves of the set of differential equations $\frac{dx}{P} = \frac{dy}{O} = \frac{dz}{R}$ form a
 - A) 1-parameter family of curves in 2-space B)2-parameter family of curves in 3-space C. 1-parameter family of curves in 3-space D) None.
- 26. Find the general integral of the linear partial differential equation xp + yq = z

A.
$$\emptyset\left(\frac{x}{y}, \frac{y}{z}\right) = 0$$

B.
$$\emptyset(x^2 - z^2, x^3 - y^3) = 0$$

C.
$$\emptyset(\frac{y}{z}, x^2 + y^2 + z^2) = 0$$

D.
$$\emptyset(x + y + z, xyz) = 0$$

27. Which of the following is a linear partial differential equation

A.
$$p^2x^2 + q^2y^2 = 1$$

B.
$$z = p^2 + q^2$$

C.
$$pq = 4xyz$$

D.
$$xzp + yzq = x$$

28. Find the general integral of the linear partial differential equation

$$p - q = \log(x + y)$$

A.
$$\emptyset\left(xy,\frac{y}{z}\right)=0$$

B.
$$\emptyset(xy, x^2 + y^2 + z^2) = 0$$

C.
$$\emptyset(x + y, x \log(x + y) - z) = 0$$

D.
$$\emptyset(\frac{xy}{z}, \frac{x-y}{z}) = 0$$

29. Choose the Lagrange's subsidiary equation

A.
$$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$$

B.
$$\frac{dx}{P} = \frac{dy}{Q}$$

C.
$$\frac{dx}{P} + \frac{dy}{Q} = \frac{dz}{R}$$

D.
$$\frac{dx}{P} - \frac{dy}{Q} = \frac{dz}{R}$$

30. Choose the general form of Lagrange's Equation

A.
$$Pp + Qq = R$$
, where P, Q, R are functions of x, y, z

B.
$$P pq + Qq = R$$
, where P, Q, R are functions of x, y, z

C.
$$Pp + Qpq = R$$
, where P, Q, R are functions of x, y, z

D.
$$Pp^2 + Qq^2 = R$$
, where P, Q, R are functions of x, y, z

31. Find the complete integral of the partial differential equation of the type

$$F(p,q)=0$$

A.
$$z = ax + c$$

B.
$$z = ax + f(a)y + c$$

C.
$$z = ay + c$$

D.
$$z^2 = ax + f(a)y + c$$

32. Find the complete integral of the equation $p^2 + q^2 = 1$

A.
$$z = ax + \sqrt{1 - a^2} y + c$$

B.
$$z = ax + c$$

C.
$$z = ax^2 + \sqrt{ay} + c$$

D.
$$z^2 = ay^2 + \sqrt{a}y + c$$

33. A complete integral of an equation in Clairaut type will be

(A)
$$z = ax - by + f(a, b)$$
 (B) $z = ax + by - f(a, b)$

(B)
$$z = ax + by - f(a,b)$$

(C)
$$z = ax - by - f(a, b)$$

(D)
$$z = ax + by + f(a, b)$$

34. Find the complete integral of z = px + qy + pq

A.
$$z = ax + by$$

B.
$$z^2 = ax + by + ab$$

C.
$$z^2 = a^2x + b^2y$$

D.
$$z = ax + by + f(a, b)$$

35. Find the singular integral of $z = px + qy + p^2 - q^2$

A.
$$4z = y^2 - x^2$$

B.
$$z = -xy$$

C.
$$z = xy$$

D.
$$z = x + y$$

36. Obtain the complete integral of $z = \frac{1}{p} + \frac{1}{q}$

A.
$$4(1+a)z = (x+ay+b)^2$$

B.
$$(z+a)^{\frac{3}{2}} = x + ay + b$$

C.
$$az^2 = 2(1+a)(x+ay) + 2b$$

D.
$$z = ax + x^3 + ay + b$$

37. Write the direction ratios of the surface $z = \emptyset(x, y)$ at the point (x, y, z)

A.
$$\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, -1\right)$$

B.
$$\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, 1\right)$$

C.
$$\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right)$$

D.
$$\left(\frac{\partial z}{\partial x}, -1\right)$$

38. Write the equation of the integral surface which pass through the point (x(t), y(t), z(t))

A.
$$U(x(t), y(t), z(t)) = C_1, U(x(t), y(t), z(t)) = C_2$$

B.
$$U(x(t), y(t), z(t)) = C_1, V(x(t), y(t), z(t)) = C_2$$

C.
$$U(x(t), y(t), z(t)) = C_1$$

D.
$$V(x(t), y(t), z(t)) = C_1$$

39. If every solution of a first order partial differential equation f(x, y, z, p, q) = 0 is also a solution

of the equation g(x, y, z, p, q) = 0, the equations are said to be

40. What is $\frac{\partial (f,g)}{\partial (p,a)}$?

$$(A) f_p f_q + g_p g_q$$

(B)
$$f_p f_q - g_p g_q$$

(B)
$$f_p f_q - g_p g_q$$
 (C) $f_p g_q + g_p f_q$ (D) $f_p g_q - g_p f_q$

(D)
$$f_p g_q - g_p f_q$$

41. What is [f, g]?

$$(\mathrm{A})\frac{\partial(f,g)}{\partial(x,p)} + \frac{\partial(f,g)}{\partial(y,q)} + p\frac{\partial(f,g)}{\partial(z,p)} + q\frac{\partial(f,g)}{\partial(z,q)} \qquad (\mathrm{B})\frac{\partial(f,g)}{\partial(x,p)} - \frac{\partial(f,g)}{\partial(y,q)} + p\frac{\partial(f,g)}{\partial(z,p)} - q\frac{\partial(f,g)}{\partial(z,q)}$$

(B)
$$\frac{\partial(f,g)}{\partial(x,p)} - \frac{\partial(f,g)}{\partial(y,q)} + p \frac{\partial(f,g)}{\partial(z,p)} - q \frac{\partial(f,g)}{\partial(z,q)}$$

$$(\mathrm{C}) \, \frac{\partial (f,g)}{\partial (x,p)} + \frac{\partial (f,g)}{\partial (y,q)} - p \, \frac{\partial (f,g)}{\partial (z,p)} - q \, \frac{\partial (f,g)}{\partial (z,p)} \qquad (\mathrm{D}) \, \frac{\partial (f,g)}{\partial (x,p)} - \frac{\partial (f,g)}{\partial (y,q)} + p \, \frac{\partial (f,g)}{\partial (z,p)} + q \, \frac{\partial (f,g)}{\partial (z,p)} + q \, \frac{\partial (f,g)}{\partial (z,q)}$$

(D)
$$\frac{\partial(f,g)}{\partial(x,y)} - \frac{\partial(f,g)}{\partial(y,g)} + p \frac{\partial(f,g)}{\partial(z,y)} + q \frac{\partial(f,g)}{\partial(z,g)}$$

42. The condition that two first order partial differential equations are compatible is

4

$$(A)\frac{\partial(f,g)}{\partial(p,g)} \neq 0, [f,g] = 0$$

(B)
$$\frac{\partial (f,g)}{\partial (p,g)} \neq 0$$
, $[f,g] \neq 0$

(C)
$$\frac{\partial (f,g)}{\partial (p,g)} = 0$$
, $[f,g] = 0$

(D)
$$\frac{\partial (f,g)}{\partial (p,g)} = 0$$
, $[f,g] \neq 0$

43. The fundamental idea of Charpit's method is the introduction of how many partial differential equations of first order?

- (A) four
- (B) two
- (C) three
- (D) one

44. In Charpit's method, a complete integral is given by

- (A) dz = p dy + q dx
- (B) dz = p dy q dx
- (C) dz = p dx + q dy
- (D) dz = p dx a dv

45. First order equation of the form f(p,q) = 0 has solution of the form

$$(A) z = ax + Q(a)y + b$$

(A)
$$z = ax + Q(a)y + b$$
 (B) $z = ax^2 + Q(a)y^2 + b$

$$(C) z = ax + Q(a)y^2 + b$$

(C)
$$z = ax + Q(a)y^2 + b$$
 (D) $z = ax^2 + Q(a)y + b$

46. A complete integral of the equation pq = 1 is

(A)
$$z = ax^2 + \frac{1}{a}y + b$$

(B)
$$z = ax + \frac{1}{a}y^2 + b$$

(C)
$$z = ax^2 + \frac{1}{a}y^2 + b$$

$$(D) z = ax + \frac{1}{a}y + b$$

47. Two surfaces are said to be circumscribe each other if they

- (A) intersect each other
- (B) are parallel
- (C) are orthogonal
- (D) touch along a curve

48. A complete integral of the equation $z = p^2 - q^2$ is

(A)
$$2\sqrt{z} = \frac{ax}{\sqrt{a^2 - 1}} + \frac{y}{\sqrt{a^2 - 1}} + b$$
 (B) $2\sqrt{z} = \frac{ax}{\sqrt{a^2 - 1}} + \frac{ay}{\sqrt{a^2 - 1}} + b$

(B)
$$2\sqrt{z} = \frac{ax}{\sqrt{a^2 - 1}} + \frac{ay}{\sqrt{a^2 - 1}} + b$$

(C)
$$2\sqrt{z} = \frac{ax^2}{\sqrt{a^2 - 1}} + \frac{y^2}{\sqrt{a^2 - 1}} + b$$
 (D) $2\sqrt{z} = \frac{ax^2}{\sqrt{a^2 - 1}} + \frac{ay^2}{\sqrt{a^2 - 1}} + b$

(D)
$$2\sqrt{z} = \frac{ax^2}{\sqrt{a^2 - 1}} + \frac{ay^2}{\sqrt{a^2 - 1}} + k$$

49. A complete integral of the equation zpq = p + q is

(A)
$$\frac{z^2}{2} = (a+1)x^2 + \left(\frac{a+1}{a}\right)xy + b$$
 (B) $\frac{z^2}{2} = (a+1)x + \left(\frac{a+1}{a}\right)y + b$

(B)
$$\frac{z^2}{2} = (a+1)x + \left(\frac{a+1}{a}\right)y + b$$

(C)
$$\frac{z^2}{2} = (a+1)x + \left(\frac{a+1}{a}\right)y^2 + \frac{a+1}{a}$$

(C)
$$\frac{z^2}{2} = (a+1)x + \left(\frac{a+1}{a}\right)y^2 + b$$
 (D) $\frac{z^2}{2} = (a+1)x^2 + \left(\frac{a+1}{a}\right)y + b$

50. A complete integral of the equation (p+q)(z-xp-yq)=1 is

(A)
$$z = ax - by - \frac{1}{a+b}$$

(B)
$$z = ax + by + \frac{1}{a+b}$$

(C)
$$z = ax^2 - by - \frac{1}{a+b}$$

(D)
$$z = ax^2 + by^2 + \frac{1}{a+b}$$

51. A first order partial differential equation is said to be separable if it is of the form

A.
$$f(x, y, z, p, q) = 0$$

B.
$$f(x, p, q) = g(y)$$

$$C.f(x,p,q) = g(z)$$

$$D. f(x,p) = g(y,q)$$

52. Find the complete integral of the equation p + q = p q

A.
$$z = ax + \frac{a}{a-1}y + 1$$

A.
$$z = ax + \frac{a}{a-1}y + b$$

B. $z = ax + \frac{a}{a+1}y + b$

$$C. z = ax + y + b$$

$$D. z = ax + by + c$$

53. Write the Clairaut's equation

$$A. \quad z = ax + by + f(p+q)$$

B.
$$z = ax + by - f(p,q)$$

C.
$$z = ax + by - f(p - q)$$

$$D. \quad z = ax + by + f(p,q)$$

54. If $\alpha_r D + \beta_r D' + \gamma_r$ is a factor of F(D, D') and $\varphi_r(\varepsilon)$ is an arbitrary function of the single variable ε , then find the solution of F(D, D')z = 0 is

A.
$$u_r = e^{\frac{-\gamma_r x}{\alpha_r}} \varphi_r(\beta_r x - \alpha_r y)$$
, $\alpha_r \neq 0$.

B.
$$u_r = e^{\frac{-\gamma_r Y}{\beta_r}} \varphi_r(\beta_r + x)$$
, $\beta_r \neq 0$.

C.
$$u_r = e^{\frac{-\gamma_r x}{\alpha_r}} \varphi_r(\beta_r x + \alpha_r y)$$
, $\alpha_r \neq 0$
D. $u_r = e^{\frac{-\gamma_r y}{\beta_r}} \varphi_r(\beta_r - x)$, $\beta_r \neq 0$.

D.
$$u_r = e^{\frac{-\gamma_r Y}{\beta_r}} \varphi_r(\beta_r - x)$$
, $\beta_r \neq 0$.

55. If $\beta_r D' + \gamma_r$ is a factor of F(D, D') and $\varphi_r(\varepsilon)$ is an arbitrary function of the single variable ε , then the solution is

A.
$$u_r = e^{\frac{-\gamma_r Y}{\beta_r}} \varphi_r(\beta_r + x)$$
, $\beta_r \neq 0$.

B.
$$u_r = e^{\frac{-\gamma_r Y}{\beta_r}} \varphi_r(\beta_r - x)$$
, $\beta_r \neq 0$.

B.
$$u_r = e^{\frac{-\gamma_r Y}{\beta_r}} \varphi_r(\beta_r - x)$$
, $\beta_r \neq 0$.
C. $u_r = e^{\frac{-\gamma_r Y}{\beta_r}} \varphi_r(\beta_r / x)$, $\beta_r \neq 0$.

D.
$$u_r = e^{\frac{-\gamma_r Y}{\beta_r}} \varphi_r(\beta_r x)$$
, $\beta_r \neq 0$.

56. If u is the complementary function and z is a particular integral of F(D,D')z = f(x,y), find the general solution of the equation

B.
$$u-z$$

- C. u + z
- D. None of these
- 57. Find the complementary function of $z_{xx} z_{yy} = x y$
 - A. $\varphi_1(x y) + \varphi_2(-x + y)$
 - B. $\varphi_1(x y) + \varphi_2(-x y)$
 - C. $\varphi_1(x y) + \varphi_2(y)$
 - D. $\varphi_1(x y) + \varphi_2(xy)$
- 58. Solve $(D^2 3DD' + 2D'^2)z = 0$
 - A. $\varphi_1(x y) + \varphi_2(2x y)$
 - B. $\varphi_1(x + y) + \varphi_2(2x + y)$
 - C. $\varphi_1(x y) + \varphi_2(-x y)$
 - D. $\varphi_1(x y) + \varphi_2(x 2y)$
- 59. Solve $(D D')^2 z = 0$
 - A. $\varphi_1(x y) + \varphi_2(-x y)$
 - B. $\varphi_1(x + y) + x\varphi_2(x + y)$
 - C. $\varphi_1(x y) + x \varphi_2(x y)$
 - D. $\varphi_1(x y) + \varphi_2(2x y)$
- 60. Solve [(D + 2D')(D-D'-1)]z = 0
 - A. $\varphi_1(x + y) + e^x \varphi_2(x + y)$
 - B. $\varphi_1(x + y) + x\varphi_2(2x + y)$
 - C. $\varphi_1(x+y) + x\varphi_2(x+y)$
 - D. $\varphi_1(2x y) + e^x \varphi_2(x + y)$
- 61. If z = f(x + ay) + g(x ay), then write the differential equation corresponding to this solution
 - A. r = t
 - B. $r = a^2 t$
 - C. $t = a^2 + t$
 - D. $t = a^2 r$
- 62. If z = f(x + iy) + g(x iy), then the differential equation corresponding to this solution
 - A. r = t
 - B. r + t = 0
 - C. r = a t
 - D. r t = 0
- 63. Solve by Jacobi's method $z^2 = p q x y$
 - A. $u = alogx + blogy + \sqrt{ab}$
 - B. $u = alog x + blog y + \sqrt{ab} + \log c$
 - C. $u = alog x blog y + \sqrt{ab} log z + log c$
 - D. $u = alogx + blogy + \sqrt{ab} logz + log c$
- 64. Find the complete integral of the equation, $u_x + u_y + u_z = u_x u_y u_z$
 - A. $u = ax.by + \theta(a,b)z + c$
 - B. $u = ax + by + \theta(a, b)z + c$
 - C. $u = ax by + \theta(a, b)z + c$
 - D. $u = ax + by \theta(a, b)z + c$

- 65. The Jacobian $J = \frac{\partial(\varepsilon,\mu)}{\partial(x,y)}$ is
 - A. $\varepsilon_{\chi}\mu_{\chi}$
 - B. $\varepsilon_x \mu_y \varepsilon_y \mu_x$
 - C. $\varepsilon_x \mu_{v+} \varepsilon_v \mu_x$
 - D. $\varepsilon_x \mu_y \mu_x$
- 66. Form a partial differential equation by eliminating the arbitrary constants from the equation $z = ax^2 + by^2$
 - A. z = p x + q y
 - B. 2z = p x q y
 - C. 2z = p x + q y
 - D. z = p x q y
- 67. The partial differential equation, $z_{xx} = z_y$ is known as
 - A. Harmonic equation
 - B. Diffusion equation
 - C. Laplace equation
 - D. Wave equation
- 68. One dimensional wave equation is
 - A. $z_{xx} = a^2 z_{yy}$
 - B. $z_x = a^2 z_{yy}$
 - C. $z_y = a^2 z_{yy}$
 - D. $z_{xx} + a^2 z_{yy} = 0$
- 69. The partial differential equation 5 z_{xx} + 6 z_{yy} = x y is classified as
 - A. elliptic
 - B. parabolic
 - C. hyperbolic
 - D. none of the above
- 70. The partial differential equation $x y(z_x) = 5z_{yy}$ is classified as
 - A. Parabolic
 - B. elliptic
 - C. hyperbolic
 - D. none of the above
- 71. The partial differential equation $z_{xx} 5z_{yy} = 0$ is classified as
 - A. Parabolic
 - B. hyperbolic
 - C. none of the above
 - D. elliptic
- 72. Consider the following partial differential equation $3z_{xx} + Bz_{xy} + 3z_{yy} + 4z = 0$. For this equation to be classified as parabolic, the value of B must be
 - A. 3
 - B. 6
 - C. 2
 - D. 0
- 73. Consider the following partial differential equation $z_{xx} + B z_{xy} + z_{yy} = 0$. For this equation to be classified as elliptic, the value of B must be

- A. 0
- B. 1
- C. -1
- D. 2
- 74. Consider the following partial differential equation $z_{xx} + B z_{xy} z_{yy} = 0$. For this equation to be classified as hyperbolic, the value of B must be
 - A. 0
 - B. 1
 - C. 2
 - D. 3
- 75. The complete solution of the partial differential equation q(p cos x) = cos y
 - A. $z = ax + sinx + \frac{siny}{a} + b$
 - B. $z = ax sinx \frac{siny}{a} + b$
 - C. $z = ax + sinx \frac{siny}{a} + b$
 - D. $z = ax sinx + \frac{siny}{a} + b$
- 76. Which of the following represents a family of right circular cone
 - A. $x^2 y^2 = cz^2$
 - B. $x^2 + y^2 + cz^2 = 0$
 - C. $x^2 + y = cz^2$
 - D. $x^2 + y^2 = cz^2$
- 77. Which of the following is the Laplace's equation
 - A. $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x^2} = 1$ B. $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x^2} = 1$ C. $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x^2} = 0$ D. $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x^2} = 0$
- 78. Which of the following is a solution of the Laplace's equation, if q is a constant and (x', y', z') are the coordinates of a fixed point,
 - A. $\frac{-q}{|\mathbf{r}-\mathbf{r'}|}$
- B. $\frac{q}{|\mathbf{r}-\mathbf{r'}|}$
- C. $\frac{q}{\sqrt{\mathbf{r}-\mathbf{r'}}}$
- D. $\frac{-q}{\sqrt{\mathbf{r}-\mathbf{r}'}}$
- 79. If the function $\psi x, y, z$ is a solution of Laplace's equation, the one parameter system of surfaces $\psi(x, y, z) = c$ is called
 - A. Orthogonal trajectories B. family of surfaces C. family of equipotential surfaces D. None of these
- 80. A one -parameter family of surfaces f(x, y, z) = c is a family of equipotential surfaces if
 - A. $\frac{\nabla^2 f}{|\operatorname{grad} f|^2}$ is not a function of f alone
 - B. $\frac{\nabla^2 f}{|\text{grad } f|^2}$ is a function of f alone
 - C. $\frac{|\operatorname{grad} f|^2}{\nabla^2 f}$ is a function of f alone
 - D. None of these
- 81. The formula $\psi = A \int e^{-\int x(f)df} df + B$ is to find
 - A. The potential function of a family of equipotential surfaces
 - B. Orthogonal Trajectories
 - C. Integral curves

- D. None of these
- 82. If $Rr + Ss + Tt + U(rt s^2) = V$, the Monge's equation when U = 0 is

A.
$$Rdpdy + Tdqdx = Vdxdy$$
$$Rdy^{2} - Sdxdy + Tdx^{2} = 0$$

B.
$$Rdpdy + Tdqdx = Vdxdy$$

$$Rdy^2 - Sdxdy + Tdx^2 = 0$$

C.
$$Rdpdy + Tdqdx = -Vdxdy$$

$$Rdy^2 + Sdxdy + Tdx^2 = 0$$

D.
$$Rdpdy - Tdqdx = Vdxdy$$
$$Rdy^{2} - Sdxdy - Tdx^{2} = 0$$

83. Laplace's equation in spherical coordinates r, θ , ϕ is

A.
$$\frac{\partial^2 \psi}{\partial r^2} + \frac{2}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} + \frac{\cot \theta}{r^2} \frac{\partial \psi}{\partial \theta} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2} = 0$$

B.
$$\frac{\partial^2 \psi}{\partial r^2} + \frac{r}{2} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} + \frac{\cot \theta}{r^2} \frac{\partial \psi}{\partial \theta} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2} = 0$$

C.
$$\frac{\partial^{2} \psi}{\partial r^{2}} + 2r \frac{\partial \psi}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial \theta^{2}} + \frac{\cot \theta}{r^{2}} \frac{\partial \psi}{\partial \theta} + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}} = 0$$

D.
$$\frac{\partial^2 \psi}{\partial r^2} + \frac{2}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r} \frac{\partial^2 \psi}{\partial \theta^2} + \frac{\cot \theta}{r^2} \frac{\partial \psi}{\partial \theta} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2} = 0$$

84. If f(z) = U + iV is an analytic function, then the Cauchy-Riemann equations are

A.
$$\frac{\partial U}{\partial x} = \frac{-\partial V}{\partial y} & \frac{\partial U}{\partial y} = \frac{-\partial V}{\partial x}$$

B.
$$\frac{\partial U}{\partial x} = \frac{\partial V}{\partial y} & \frac{\partial U}{\partial y} = \frac{-\partial V}{\partial x}$$

C.
$$\frac{\partial U}{\partial x} = \frac{-\partial V}{\partial y} \& \frac{\partial U}{\partial y} = \frac{-\partial V}{\partial x}$$

D.
$$\frac{\partial U}{\partial x} = \frac{\partial V}{\partial y} & \frac{\partial U}{\partial y} = \frac{\partial V}{\partial x}$$

- 85. Which of the following is true:
 - A. Real part of an analytic function is harmonic, but imaginary poart is not.
 - B. Real part of an analytic function is not harmonic, but imaginary poart is harmonic.
 - C. The real part & the imaginary part of an analytic function are harmonic.
 - D. Neither the real part nor the imaginary part of an analytic function is harmonic
- 86. Which of the following is true:
 - A. $r \cos \theta$ is a solution, but $r^{-2} \cos \theta$ is not a solution of the Laplace's equation.
 - B. $r\cos\theta$ is not a solution, but $r^{-2}\cos\theta$ is a solution of the Laplace's equation.
 - C. $r\cos\theta$ and $r^{-2}\cos\theta$ are solutions of the Laplace's equation.
 - D. None of these

- 87. The method of finding the solution of a partial differential equation od second order by finding one or two first integrals is
 - A. Cauchy's method B. Jacobi's method C. Charpit's method D. Monge's method
- 88. Which of the following is true:
 - A. The derivative of an analytic function is not analytic
 - B. The derivative of an analytic function is sometimes analytic
 - C. The derivative of an analytic function is analytic
 - D. Cannot be determined
- 89. If $\phi = x + \frac{x}{x^2 + y^2}$, the corresponding analytic function $\phi + i\psi$ is
 - A. $w = z \frac{1}{z}$
 - B. $w = z + \frac{1}{z}$
 - C. $w = \frac{1}{z} z$
 - D. $w = z + \frac{1}{2z}$
- 90. The partial differential equation Rr + Ss + Tt + Pp + Qq + Zz = F is separable in the variables x, y, if
 - A. $\frac{1}{X}f(D)X = Yg(D')Y$ where f(D), g(D') are quadratic functions of $D = \partial/\partial x$ and $D' = \partial/\partial y$ respectively
 - B. $\frac{1}{X}f(D)X = \frac{1}{Y}g(D')Y$ where f(D), g(D') are quadratic functions of $D = \partial/\partial x$ and $D' = \partial/\partial y$ respectively
 - C. $Xf(D)X = \frac{1}{Y}g(D')Y$ where f(D), g(D') are quadratic functions of $D = \partial/\partial x$ and $D' = \partial/\partial y$ respectively
 - D. $\frac{1}{X}f(D)X = 1/Y^2 g(D')Y$ where f(D), g(D') are quadratic functions of $D = \partial/\partial x$ and $D' = \partial/\partial y$ respectively
- 91. A solution of the equation $q^2r 2pqs + p^2t = 0$ is
 - $A. \ y xf(z) = g(z)$
 - B. xyf(z) = g(z)
 - C. $\frac{y}{x}f(z) = g(z)$
 - D. y + xf(z) = g(z)
- 92. Solution of the equation r = t by Monge's method is
 - A. $z = \phi_1(x + y) + \phi_2(x y)$
 - B. $z = \phi_1(x + y)$
 - C. $z = x\phi_1(x + y) + \phi_2(x y)$
 - D. None of these
- 93. the two -dimensional harmonic in plane polar coordinates r and θ is
 - A. $\frac{\partial^2 V}{\partial r^2} \frac{1}{r} \frac{\partial V}{\partial r} + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} = 0$
 - B. $\frac{\partial^2 V}{\partial r^2} + \frac{1}{r} \frac{\partial V}{\partial r} \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} = 0$
 - C. $\frac{\partial^2 V}{\partial r^2} + \frac{1}{r} \frac{\partial V}{\partial r} + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} = 0$

D.
$$\frac{\partial^2 V}{\partial r^2} - \frac{1}{r} \frac{\partial V}{\partial r} - \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} = 0$$

A.
$$\frac{d^2R}{d\rho^2} + \frac{1}{\rho} \frac{dR}{d\rho} + \left(m^2 - \frac{n^2}{\rho^2}\right)R = 0$$

B.
$$\frac{d^2R}{d\rho^2} + \frac{1}{\rho} \frac{dR}{d\rho} + \left(m^2 + \frac{n^2}{\rho^2}\right)R = 0$$

C.
$$\frac{d^2R}{d\rho^2} - \frac{1}{\rho} \frac{dR}{d\rho} + \left(m^2 - \frac{n^2}{\rho^2}\right)R = 0$$

D.
$$\frac{d^2R}{d\rho^2} - \frac{1}{\rho} \frac{dR}{d\rho} + \left(m^2 + \frac{n^2}{\rho^2}\right) R = 0$$

95. Which of the following is not a partial differential equation of second order

A.
$$r + 4s + t + rt - s^2 = 2$$

B.
$$r = t$$

C.
$$2xp + 3y q = 2$$

D.
$$q^2r - 2pqs + p^2t = 0$$

96. if a function z satisfies the differential equation $\frac{\partial^2 z}{\partial x^2} \frac{\partial z}{\partial y} = \frac{\partial^2 z}{\partial x \partial y} \frac{\partial z}{\partial x}$ it is of the form

A.
$$f\{x + g(y)\}$$

B.
$$f\{\frac{g(x)}{y}\}$$

B.
$$f\{\frac{g(x)}{y}\}$$
 C. $f\{x - g(y)\}$ D. $f\{xg(y)\}$

D.
$$f\{xg(y)$$

97. The surfaces $x^2 + y^2 + z^2 = cx^2$ forms a family of equipotential surfaces. Then the general form of the corresponding potential function,

A.
$$Cx(x + y + z) + B$$

B.
$$Cx(x^2 + y^2 + z^2)^{\frac{1}{2}} + B$$

C.
$$Cx(x^2 + y^2 + z^2)^{\frac{-3}{2}} + B$$

D.
$$Cx(x^2 + y^2 + z^2)^{\frac{3}{2}} + B$$

98. The surfaces $(x^2 + y^2)^2 - 2a^2(x^2 - y^2) + a^4 = c$ forms a family of equipotential surfaces.

Then
$$\frac{\nabla^2 f}{|\nabla f|^2}$$
, if $f = (x^2 + y^2)^2 - 2a^2(x^2 - y^2) + a^4$, is

B.
$$\frac{1}{t}$$

$$C.\frac{1}{f^2}$$

A.
$$f$$
 B. $\frac{1}{f}$ C. $\frac{1}{f^2}$ D. f^2

99. The potential function for the family of surfaces $x^2 + y^2 = cz^2$ is

A.
$$A \log \tan \frac{1}{2}\theta + B$$

B. A
$$\tan \frac{1}{2}\theta + B$$

C.
$$A\log \frac{1}{2}\theta + B$$

D.
$$A\log \frac{tan\theta}{2} + B$$

100. The solution of the equation $zrq^2 - 2pqs + tp^2 = pt - qs$

$$A. \ y = g(z) + f(x - z)$$

B.
$$y = g(z) + f(x+z)$$

$$C. \quad y = g(x) + f(x+z)$$

D.
$$y = g(xz) + f(x - z)$$

SEMESTER III PARTIAL DIFFERENTIAL EQUATIONS

ANSWER KEY

1.C	2.A	3.D	4.B	5.A	6.D	7.A
8.D	9.B	10. C	11. B	12.B	13. A	14. D
15. C	16. C	17. A	18. C	19. B	20. C	21 B
22. A	23. C	24. D	25.B	26. A	27. D	28. C
29. A	30. A	31. B	32. A	33. D	34. D	35. A
36. C	37. A	38. B	39. C	40. D	41. A	42. A
43. D	44. C	45. A	46. D	47. D	48.A	49. B
50.B	51. D	52.A	53. D	54. A	55. D	56. C
57. B	58. B	59. B	60. D	61. D	62. B	63. D
64. B	65. B	66. C	67. B	68. A	69. A	70. A
71. B	72. B	73. A	74. A	75. A	76. D	77. B
78. B	79. C	80. B	81. A	82. A	83. A	84. B
85. C	86. C	87. D	88. C	89. B	90. B	91. D
92. C	93. C	94. A	95. C	96. A	97. C	98. B
99. A	100.A					