Measure Theory MCQ -Module 1

- 1. If A and B are two sets such that $A \subseteq B$, then $m^*(A) \le m^*(B)$ (B) $m^*(A) \ge m^*(B)$ (C) $m^*(A) \ne m^*(B)$ (D) None of these
- 2. Which of the following statements is false for a Lebesgue Outer Measure of an arbitrary set
 - $(A) \qquad m^* (A) \ge 0 \ \forall \ A$
 - (B) If $A \subseteq B$, then $m^*(A) \le m^*(B)$
 - (C) $m^*(A+x) = m^*(A) \forall x \in R$
 - (D) If $\{E_k\}$ is any countable collection of sets disjoint or not, then $m^*(\bigcup_{k=1}^{\infty} E_k) > \sum_{k=1}^{\infty} m^*(E_k)$
- 3. A set E is said to be measurable if for each set A
 - (A) $m^*(A) = m^*(A \cap E) + m^*(A \cap E^c)$
 - (B) $m^*(A) = m^*(A \cup E) + m^*(A \cup E^c)$
 - (C) $m^*(E) = m^*(A \cap E) + m^*(A \cap E^c)$
 - (D) $m^*(E) = m^*(A U E) + m^*(A U E^c)$
- 4. Identify the wrong statement
 - (A) cantor set is uncountable
 - (B) cantor set is open
 - (C) cantor set is measurable
 - (D) cantor set is nonempty
- 5. Which property is called countable subadditivity of outer measure
 - (A) $\mathfrak{m}^{*}(\bigcup_{k=1}^{\infty} \mathbb{E}_{k}) \leq \sum_{k=1}^{\infty} \mathfrak{m}^{*}(\mathbb{E}_{k})$
 - (B) $m^*(\bigcup_{k=1}^{\infty} E_k) \ge \sum_{k=1}^{\infty} m^*(E_k)$
 - (C) $m^*(\bigcup_{k=1}^{n} E_k) \ge \sum_{k=1}^{n} m^*(E_k)$
 - (D) None of these
- 6. Which is a Measurable set?
 - (A) open set
 - (B) closed set
 - (C) Borel set
 - (D) All the above
- 7. The outer measure of a countable set is
 - (A) 0
 - (B) ∞
 - (C) 1
 - (D) Not defined
- 8. The outer measure of Cantors set is

(A) ∞ (B) 1 (C) 0 (D) $\frac{1}{3}$

9. If $\{E_k\}_{k=1}^{\infty}$ is an ascending collection of measurable sets and $E = \bigcup_{k=1}^{\infty} E_k$, then m(E) is equal to

- (A) $\sum_{k=1}^{\infty} m(E_k)$ (B) 0 (C) ∞ (D) $\lim_{k \to \infty} m(E_k)$
- 10. If $\{E_k\}_{k=1}^{\infty}$ is an descending collection of measurable sets with m (E₁) < ∞ and E= $\bigcap_{k=1}^{\infty} E_k$, then m(E) is equal to (A) $\sum_{k=1}^{\infty} m(E_k)$ (B) 0 (C) ∞ (D) $\lim_{k \to \infty} m(E_k)$

11. Which of the following statements is true for a Lebesgue measure

- (A) countable additivity
- (B) Monotonicity
- (C) translation invariant
- (D) All the above are true
- 12. If I = [a,b] is a closed interval, then length of I is
 - (A) a+b (B) a-b (C) b-a (D) None of these

13. Which of the following statement is true

- (A) There exists a non-measurable subset of real numbers
- (B) There exists a measurable set which is not a Borel set.
- (C) There exists an uncountable set having measure zero.
- (D) All the above are true
- 14. Which of the following is an algebra on $X = \{1, 2, 3\}$
 - $(A) \{ \emptyset \}$
 - $(B) \{ \emptyset, \{1\}, \{1,2\} \}$
 - (C) $\{\emptyset, \{1\}, \{2,3\}, \{1,2,3\}\}$
 - $(D){X}$
- 15. If A and B are two sets such that $m^*(A) = 0$, then
 - (A) m^* (AUB) = m^* (B)
 - (B) $m^*(A) = m^*(B)$
 - (C) $m^*(A) \le m^*(B)$
 - (D) $m^*(B) \le m^*(A)$
- 16. Which of the following statement is true
 - (A) F_{σ} set is measurable.
 - (B) G_{δ} set is measurable.
 - (C) Borel set is measurable
 - (D)All the above are true

17. The outer measure of empty set is

(A) 0	(B) ∞	(C) 1	(D) Ø
-------	-------	-------	-------

18. $m^*(\{k\}) = \dots$, where k is a real number

(A) 1 (B) 0 (C) k (D) None of these

19. Identify the correct statement

- (A) Cantor Lebesgue function is an increasing function
- (B) Cantor Lebesgue function is a continuous function
- (C) Cantor Lebesgue function maps [0,1] onto [0,1]
- (D) All the above are true.
- 20. If Ω is an algebra and A, B $\in \Omega$, then
 - (A) $A-B \in \Omega$ (B) $A\Delta B \in \Omega$ (C) $A \cap B \in \Omega$
- (D)All the above are true

- 21. F_{σ} set is the
 - (A) intersection of a countable collection of open sets.
 - (B) intersection of a countable collection of closed sets
 - (C) union of a countable collection of open sets
 - (D) union of a countable collection of closed sets

22. G_{δ} set is the

- (A) intersection of a countable collection of open sets.
- (B) intersection of a countable collection of closed sets
- (C) union of a countable collection of open sets
- (D) union of a countable collection of closed sets
- 23. Which one is not equivalent to the measurability of any set of real numbers E
 - (A) For each $\epsilon > 0$, there is an open set O containing E for which m* (O-E) < ϵ
 - (B) For each $\epsilon > 0$, there is a closed set F containing E for which m* (F-E)< ϵ
 - (C) For each $\epsilon > 0$, there is a closed set F contained in E for which m* (E-F)< ϵ
 - (D) There is a G_{δ} set G containing E for which m* (G-E)< ϵ
- 24. For any set E and any $\epsilon > 0$, there exists an open set O containing E for which
 - (A) m^* (O) $\geq m^*$ (E) + ϵ
 - (B) m^* (O) $\leq m^*$ (E) ϵ
 - (C) $m^*(O) \ge m^*(E) \epsilon$
 - (D) m^* (O) $\leq m^*$ (E) + ϵ

25. Let A be the set of irrational numbers in [0,1], then

(A) m* (A)= 0
(B) m* (A) =1
(C) m* (A)=∞

(D) $m^*(A)=2$

Measure Theory Question Bank: Module 2

August 9, 2022

1. $\{f_n\}$ be a sequence of increasing functions on a set E, if for all index n:

(A) $f_n \ge f_{n+1}$ (B) $f_n \le f_{n+1}$

(C) $f_n \neq f_{n+1}$

(D) $f_n = f_{n+1}$

2. Let f be an extended real valued function defined on a measurable domain E. If f is Lesbesgue measurable, then for each real number c, which of the following statements is true.

(A) $\{x \in E | f(x) > c\}$ is measurable. (B) $\{x \in E | f(x) < c\}$ is measurable. (C) $\{x \in E | f(x) = c\}$ is measurable. (D) All of the above.

3. Let f be an extended real valued function defined on a measurable domain E. Then f is measurable if and only if for each open set O, $f^{-1}(O) = \{x \in E | f(x) \in O\}$ is: (A) $f^{-1}(O) = \{x \in E | f(x) \in O\}$ is open.

(B) $f^{-1}(O) = \{x \in E | f(x) \in O\}$ is measurable.

(C) $f^{-1}(O) = \{x \in E | f(x) \in O\}$ is closed.

(D) None of the above.

4. Which one of the following is false.

(A) A monotone function that is defined on an interval is not measurable.

(B) Let f be an extended measurable real-valued function on E and f = g a.e. on E, then g is measurable on E.

(C) A monotone function that is defined on an interval is measurable.

(D) A real-valued function that is continuous on its measurable domain is measurable.

5. Let f and g be measurable functions on E that are finite a.e. on E. Then which of the following statements is false.

(A) For $\alpha, \beta \in \mathbb{R}$, $\alpha f + \beta g$ is measurable on E.

(B) $(f+g)^2$ is measurable on E.

(C) fg is measurable on E.

(D) None of the above.

6. If A is any set. Then the characteristic function χ_A is defined as (A) $\chi_A = \begin{cases} 0 & \text{if } x \in A \\ 1 & \text{otherwise.} \end{cases}$ (B) $\chi_A = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise.} \end{cases}$ (C) $\chi_A = \begin{cases} 1 & \text{if } x \in A \\ -1 & \text{otherwise.} \end{cases}$ (D) None of the above.

7. The characteristic function χ_A is measurable if and only if

- (A) A has measure 0.
- (B) A has infinite measure.
- (C) A is measurable.
- (D) None of the above.

8. Which one of the following is false.

- (A) If f is measurable on E, then |f| is measurable.
- (B) If f is measurable on E, then, f^- is not measurable.
- (C) If f is measurable on E, then f^+ is measurable.
- (D) If f is measurable on E, then, f^- is measurable.

9. A real-valued function ϕ defined on a measurable set E is simple if

- (A) It is measurable.
- (B) It assumes only a finite number of values.
- (C) It is measurable and assumes only a finite number of values.
- (D) None of the above.

10. A bounded real-valued function f defined on a closed, bounded interval [a, b] is Riemann integrable over [a, b] if:

(A) (R)
$$\int_{a}^{b} f < (R) \int_{a}^{b} f$$

- (B) $(R) \int_{a}^{\overline{b}} f > (R) \int_{a}^{\overline{b}} f.$
- (C) (R) $\int_{a}^{\overline{b}} f \leq (R) \int_{a}^{\overline{b}} f.$
- (D) (R) $\int_{a}^{b} f = (R) \int_{a}^{\overline{b}} f.$

11. Dirichlet's function f is defined on [0, 1] as:

(A) $f(x) = \begin{cases} 0 & \text{if } x \text{ rational} \\ 1 & \text{if } x \text{ irrational.} \end{cases}$ (B) $f(x) = \begin{cases} 0 & \text{if } x \text{ cational.} \\ 1 & \text{if } x \text{ ortational.} \end{cases}$ (C) $f(x) = \begin{cases} 1 & \text{if } x \text{ rational} \\ 0 & \text{if } x \text{ irrational.} \end{cases}$

(D) None of the above.

12. Which of the following is the Reimann integral of the Dirichlet's function defined on [0,1]?

- (A) 1
- (B) 0
- (C) Does not exist.
- (D) None of the above.

13. Let f be a bounded function defined on [a, b]. Then which of the following statements is correct:

(A) If f is Lesbesgue integrable over [a, b], then f is Reimann integrable over [a, b].

(B) If f is Reimann integrable over [a, b], then f is Lesbesgue integrable over [a, b].

(C) If f is Reimann integrable over [a, b], then f may not be Lesbesgue integrable over [a, b].

(D) None of the above.

14. Let f be a bounded measurable function on a set of finite measure E. Suppose A and B are disjoint measurable subsets of E. Then $\int_{A \cup B} f =$

 $\begin{array}{ll} (\mathrm{A}) \ \int_A f + \int_B f. \\ (\mathrm{B}) \ \int_A f - \int_B f. \\ (\mathrm{C}) \ \int_A f + \int_B f - \int_{A \cap B} f. \\ (\mathrm{D}) \ \mathrm{None \ of \ the \ above.} \end{array}$

15. Let f be a bounded measurable function on a set of finite measure E. Then (A) $|\int_E f| > \int_E |f|$. (B) $|\int_E f| = \int_E |f|$. (C) $|\int_E f| \ge \int_E |f|$. (D) $|\int_E f| \le \int_E |f|$.

16. Let f be a nonnegative measurable function on E. Then for any $\lambda > 0$, (A) $m\{x \in E | f(x) \ge \lambda\} \le \frac{1}{\lambda} \int_E f$. (B) $m\{x \in E | f(x) \ge \lambda\} \ge \frac{1}{\lambda} \int_E f$. (C) $m\{x \in E | f(x) \ge \lambda\} = \frac{1}{\lambda} \int_E f$. (D) $m\{x \in E | f(x) \ge \lambda\} > \frac{1}{\lambda} \int_E f$.

17. Let f be a nonnegative measurable function on E. Then $\int_E f = 0$ if and only if (A) f > 0 a.e. on E. (B) f = 0 a.e. on E. (C) $f \le 0$ a.e. on E. (D) f < 0 a.e. on E.

18. Let $\{f_n\}$ be a sequence of nonnegative measurable functions on E. If $\{f_n\} \to f$ pointwise a.e. on E, then

(A) $\int_E f = \liminf \int_E f_n$. (B) $\int_E f \ge \liminf \int_E f_n$. (C) $\int_E f \le \liminf \int_E f_n$. (D) None of the above.

19. Let $E = \mathbb{R}$. For any natural number *n*, define $g_n = \chi_{(n,n+1)}$. Then g_n converges pointwise to (A) $g \equiv 0$ on *E*. (B) $g \equiv 0.5$ on *E*.

(C) $q \equiv 1$ on E.

(D) None of the above.

20. A nonnegative measurable function f on a measurable set E is said to be integrable over E if

(A) $\int_E f = 0.$

- (B) $\int_{E}^{L} f < \infty$. (C) $\int_{E} f = \infty$.

(D) None of the above.

21. Let the nonnegative function f be integrable over E. Then

- (A) f is constant a.e. on E.
- (B) f is 0 a.e. on E.
- (C) f is finite a.e. on E.
- (D) None of the above.

22. For an extended real-valued function f on E, the positive part f^+ of f is: (A) $f^+(x) = \max\{f(x), 0\}.$ (B) $f^+(x) = \max\{-f(x), 0\}.$ (C) $f^+(x) = -\max\{f(x), 0\}.$ (D) $f^+(x) = \min\{f(x), 0\}.$

23. For an extended real-valued function f on E, the negative part f^- of f is: (A) $f^{-}(x) = \min\{-f(x), 0\}.$ (B) $f^{-}(x) = \max\{-f(x), 0\}.$ (C) $f^{-}(x) = -\max\{f(x), 0\}.$ (D) None of the above.

24. If |f| is integrable over E, then the integral of f over E is given by (D) None of the above.

25. Let the functions f and g be integrable over E. Then for any α and β , (A) $\int_E (\alpha f + \beta g) = \alpha \int_E f - \beta \int_E g.$ (B) $\int_{E} (\alpha f + \beta g) = -\alpha \int_{E} f + \beta \int_{E} g.$ (C) $\int_{E} (\alpha f + \beta g) = -\alpha \int_{E} f - \beta \int_{E} g.$ (D) $\int_{E} (\alpha f + \beta g) = \alpha \int_{E} f + \beta \int_{E} g.$

Measure Theory MCQ-Module 3

- 1. A pair (X, \mathcal{M}) consisting of a set X and a σ -algebra \mathcal{M} of subsets of X is called a
 - (A) Measurable space
 - (B) σ -finite space
 - (C) Measure Space
 - (D) Complete Measure Space
- 2. Let (X, \mathcal{M}, μ) be a measure space. A subset *E* of *X* is called measurable if
 - (A) $\mu(E) = 0$
 - (B) $\mu(E) \neq 0$
 - (C) $E \in \mathcal{M}$
 - (D) $E \notin \mathcal{M}$
- 3. A measurable space (X, \mathcal{M}) together with a measure μ defined on it, is called a
 - (A) Topological Space
 - (B) Measure Space
 - (C) σ -finite space
 - (D) Complete Measure Space
- If μ is a measure on a measurable space (X, M), which of the following statements is true.
 - (A) $\mu: \mathcal{M} \to [0, \infty]$
 - (B) $\mu(\phi) = 0$
 - (C) μ is countably additive
 - (D) All the above
- 5. For any set X, we define $\mathcal{M} = 2^X$, the collection of all subsets of X, and define a measure η by defining the measure of a finite set to be the number of elements in the set and the measure of an infinite set to be ∞ . This measure is called
 - (A) Counting measure
 - (B) Lebesgue measure

(C) Dirac Measure

- (D) Borel Measure
- 6. For any σ -algebra \mathcal{M} of subsets of a set X and point x_0 belonging to X, we can define a measure δ_{x_0} by

$$\delta_{x_0}(E) = \begin{cases} 1 & \text{if } x_0 \in E \\ 0 & \text{if } x_0 \notin E \end{cases} \quad \text{for every } E \in \mathcal{M}$$

This measure is called

- (A) Counting measure
- (B) Lebesgue measure
- (C) Dirac Measure
- (D) Borel Measure
- Let (X, M, μ) be a measure space. Then for any finite disjoint collection {E_k}ⁿ_{k=1} of measurable sets,

$$\mu\left(\bigcup_{k=1}^{n} E_k\right) = \sum_{k=1}^{n} \mu(E_k)$$

This property is known as

- (A) Monotonicity
- (B) Finite Additivity
- (C) Excision
- (D) Continuity of Measure
- 8. Let (X, \mathcal{M}, μ) be a measure space. If A and B are measurable sets and $A \subseteq B$, then

$$\mu(A) \le \mu(B)$$

This property is known as

- (A) Finite Additivity
- (B) Excision
- (C) Monotonicity
- (D) Continuity of Measure

Let (X, M, μ) be a measure space. If A and B are measurable sets, A ⊆ B and μ(A) < ∞, then

$$\mu(B \sim A) \le \mu(B) - \mu(A)$$

This property is known as

- (A) Finite Additivity
- (B) Excision
- (C) Monotonicity
- (D) Continuity of Measure
- 10. Let (X, \mathcal{M}, μ) be a measure space. Then for any countable collection $\{E_k\}_{k=1}^{\infty}$ of measurable sets that covers a measurable set E,

$$\mu(E) \leq \sum_{k=1}^{\infty} \mu(E_k)$$

This property is known as

- (A) Monotonicity
- (B) Countable additivity
- (C) Continuity of Measure
- (D) Countable Monotonicity
- 11. Let (X, \mathcal{M}, μ) be a measure space. Then for any countable disjoint collection $\{E_k\}_{k=1}^{\infty}$ of measurable sets,

$$\mu\left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} \mu(E_k)$$

This property is known as

- (A) Countable Additivity
- (B) Monotonicity
- (C) Countable Monotonicity
- (D) Continuity of Measure
- 12. A sequence of sets $\{E_k\}_{k=1}^n$ is called ascending if
 - (A) for each k, $E_{k+1} = E_k$

- (B) for each $k, E_{k+1} \neq E_k$
- (C) for each $k, E_k \subseteq E_{k+1}$
- (D) for each $k, E_{k+1} \subseteq E_k$
- 13. Let (X, \mathcal{M}, μ) be a measure space. If $\mu(X) < \infty$, then the measure μ is said to be
 - (A) Positive
 - (B) Finite
 - (C) Semifinite
 - (D) σ -finite
- 14. Let (X, \mathcal{M}, μ) be a measure space. If X is the union of a countable collection of measurable sets, each of which has finite measure, then the measure μ is said to be
 - (A) Positive
 - (B) Finite
 - (C) Semifinite
 - (D) σ -finite
- 15. Let (X, \mathcal{M}, μ) be a measure space. A measurable set *E* is said to be of finite measure provided
 - (A) $\mu(E) < \infty$
 - (B) $\mu(E) = \infty$
 - (C) $\mu(E) \ge 0$
 - (D) $\mu(E) = 0$
- 16. Let (X, \mathcal{M}, μ) be a measure space and E is a measurable set. If E is the union of a countable collection of measurable sets, each of which has finite measure, then E is said to be
 - (A) Finite
 - (B) σ -finite
 - (C) positive
 - (D) saturated
- 17. Which of the following is a finite measure?

- (A) Counting measure on an uncountable set
- (B) Lebesgue measure on $(-\infty, \infty)$
- (C) Lebesgue measure on [0,1]
- (D) None of these

18. A measure space (X, \mathcal{M}, μ) is said to be complete provided

- (A) \mathcal{M} contains all subsets of X
- (B) $\mathcal{M} = \{X, \emptyset\}$
- (C) ${\mathcal M}$ contains all subsets of sets of measure ∞
- (D) ${\mathcal M}$ contains all subsets of sets of measure zero
- 19. Let v be a signed measure. A set A is called positive with respect to v if
 - (A) A is measurable and $v(E) \ge 0$ for all measurable subsets E of A.
 - (B) A is measurable and v(E) > 0 for all measurable subsets E of A.
 - (C) A is measurable and v(A) > 0.
 - (D) A is measurable and $v(A) \ge 0$

20. Let v be a signed measure. A set B is called negative with respect to v if

- (A) *B* is measurable and v(B) < 0.
- (B) *B* is measurable and $v(B) \leq 0$
- (C) B is measurable and $v(E) \leq 0$ for all measurable subsets E of B.
- (D) *B* is measurable and v(E) < 0 for all measurable subsets *E* of *B*.

21. Let v be a signed measure. A set A is called null with respect to v provided

- (A) A is measurable and v(A) = 0.
- (B) A is measurable and $v(A) \ge 0$
- (C) A is measurable and $v(E) \ge 0$ for all measurable subsets E of A.
- (D) A is measurable and v(E) = 0 for all measurable subsets E of A.
- 22. Let v be a signed measure on the measurable space (X, \mathcal{M}) . Which of the following is a Hahn decomposition for v?
 - (A) $X = A \cup B$ where $A \cap B \neq \emptyset$, A is positive for ν and B is negative for ν

- (B) $X = A \cup B$ where $A \cap B = \emptyset$, A is positive for v and B is negative for v
- (C) $X = A \cup B$ where $A \cap B = \emptyset$ and both A and B are positive for ν
- (D) $X = A \cup B$ where $A \cap B = \emptyset A$ is positive for ν and B is negative for ν
- 23. Let v be a signed measure on the measurable space (X, \mathcal{M}) . Which of the following gives the Jordan decomposition of v?
 - (A) $\nu = \nu^+ \nu^-$ where ν^+ and ν^- are mutually singular measures on (X, \mathcal{M})
 - (B) $\nu = \nu^+ + \nu^-$ where ν^+ and ν^- are mutually singular measures on (X, \mathcal{M})
 - (C) $\nu = \nu^+ \nu^-$ where ν^+ and ν^- are measures on (X, \mathcal{M})
 - (D) $v = v^+ + v^-$ where v^+ and v^- are measures on (X, \mathcal{M})
- 24. Which of the following statements defines an outer measure on a set *X*.
 - (A) $\mu^*: 2^X \to [-\infty, \infty], \mu^*(\emptyset) = 0$ and μ^* is countably monotone.
 - (B) $\mu^*: 2^X \to [0, \infty], \mu^*(\emptyset) = 0$ and μ^* is countably monotone.
 - (C) $\mu^*: 2^X \to [-\infty, \infty], \mu^*(\emptyset) = 0$ and μ^* is monotone.
 - (D) $\mu^*: 2^X \to [0, \infty], \mu^*(\emptyset) = 0$ and μ^* is monotone.
- 25. For a set X and the σ -algebra $\mathcal{M} = \{X, \emptyset\}$, which functions are measurable with respect to \mathcal{M} .
 - (A) Only the constant functions on X
 - (B) Every extended real-valued function on X
 - (C) Only the Identity Function on X
 - (D) Only the simple functions on X
- 26. Let (X, \mathcal{M}) be a measurable space and f and g be any two measurable real-valued functions on X. Then which of the following statements is false.
 - (A) f g is measurable
 - (B) fg is measurable
 - (C) $f \circ g$ is measurable
 - (D) max (f, g) is measurable
- 27. Two measures v_1 and v_2 on a measurable space (X, \mathcal{M}) are said to be mutually singular if there are disjoint measurable sets A and B with $X = A \cup B$ for which

(A) $\nu_1(A) \ge 0$ and $\nu_2(B) \le 0$ (B) $\nu_1(A) = \nu_2(B) = 0$ (C) $\nu_1(A) = 0$ and $\nu_2(B) \ne 0$ (D) $\nu_1(A) \ne 0$ and $\nu_2(B) \ne 0$

Measure Theory MCQ- Module 4

1. Which category of functions are used to define the integral of non-negative measurable functions?

a) Simple functions	b) Step functions

c) Real valued functions	d) Extended real valued functions
--	---

2. Let (X, \mathcal{M}, μ) be a measure space, f be a nonnegative measurable function on X, and λ is a positive real number, then the Chebychev's inequality states that:

a) $\mu\{x \in X/f(x) > \lambda\} \le \frac{1}{\lambda} \int f d \mu$	b) μ { $x \in X/f(x) \le \lambda$ } $< \frac{1}{\lambda} \int f d \mu$
c) μ { $x \in X/f(x) > \lambda$ } $\leq \frac{1}{\lambda} \int f d \mu$	d) μ { $x \in X/f(x) \ge \lambda$ } $\le \frac{1}{\lambda} \int f d \mu$

3. The Monotone Convergence Theorem is valid for

a)	Simple functions	b) Step functions
c) [Non negative measurable functions	d) Measurable functions

4. The convergence of a sequence of bounded integrals corresponding to a sequence of nonnegative integrable functions, to the integral of a function which is finite a.e. is guaranteed by

a) Monotone convergence theorem	b) Lebesgue's convergence theorem
c) Fatou's lemma	d) Beppo Levi's lemma

- 5. Let (X, \mathcal{M}, μ) be a measure space and f a nonnegative measurable function on
 - X. Then f is said to be integrable over X with respect to μ if,

a) $\int f \ d\mu \ge 0$	b) $\int f d\mu < \infty$
c) $\int f d\mu \leq \infty$	d) $\int f d\mu > 0$

- 6. Let f be a non-negative measurable function on a space (X, μ) such that f = 0 a.e. on X. Then
 - a) $\int_X f d\mu > 0$ b) $\int_X f d\mu \ge 0$
 - c) $\int_X f d\mu \le 0$ d) $\int_X f d\mu = 0$

7. Let f and g be nonnegative measurable functions on X for which $g \leq f$ a.e. on X. Then

a) $\int_X f d\mu \ge \int_X g d\mu$	b) $\int_X f d\mu > \int_X g d\mu$
c) $\int_X f d\mu = \int_X g d\mu$	d) $\int_X f d\mu \neq \int_X g d\mu$

8. The positive part of a measurable function is defined as

a) max { <i>f</i> ,0}	b) max {- <i>f</i> ,0}
c) max $\{f, -f\}$	d) max {+ <i>f</i> ,− <i>f</i> }

9. Let (X, \mathcal{M}, μ) be a measure space and f a measurable function on X. Then f is said to be integrable over X with respect to μ if,

a) only f^+ is integrable	b) only f^{-is} integrable
c) either f^+ or f^- is integrable	d) $ f $ is integrable.

10. Let (X, M, μ) be a measure space and {f_n}, a sequence of integrable functions on X. Suppose for each ε > 0, there is a δ > 0 such that for any natural number n and measurable set E ⊆ X, if μ(E) < δ, then ∫_E |f_n|dμ < ∞. Then
a) {f_n} is pointwise integrable
b) {f_n} is finitely integrable
c) {f_n} is uniformly measurable
d) {f_n} is uniformly integrable

11. Let (X, \mathcal{M}, μ) be a measure space for which $\mu(x) = 0$ and $f = \infty$ on X. Then,

a) $\int_X f d\mu \ge 0$	b) $\int_X f d\mu = 0$
c) $\int_X f d\mu = \infty$	d) $\int_X f d\mu < \infty$

12. Which theorem establishes the passage of limit under the integral sign in the case of a sequence of integrable functions converging pointwise?

a) Monotone convergence theorem	b) Lebesgue dominated convergence theorem
c) Vitali convergence theorem	d) Bounded convergence theorem

13. Which theorem states that a σ -finite measure defined on a measurable space (*X*, \mathcal{M}) can be determined by the integral of a nonnegative measurable function?

a) Lebesgue decomposition theorem	b) Lebesgue convergence theorem
c) Vitali convergence theorem	d) Radon -Nikodym theorem

14. Two measures $\mu \& \nu$ on a measurable space (X, \mathcal{M}) are said to be mutually singular if there are disjoint sets A & B with,

a) $X = A \cup B \& \mu(A) = \nu(B)$	b) $X = A \cup B \& \mu(A) \neq \nu(B)$
c) $X = A \cup B \& \mu(A) \ge \nu(B)$	d) $X = A \cup B \& \mu(A) = \nu(B) = 0$

15. If $\mu \& v$ are measures on a measurable space (X, \mathcal{M}) such that $\mu \perp v$ and $\mu \ll v$, then

a) $\mu = 0$	b) $ u = 0$
c) $\mu = u = 0$	d) $\mu \geq \nu$

16. If (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are two measure spaces , then $A \times B$ is called a measurable rectangle if

a) $A \subseteq X, B \subseteq Y \& A \notin \mathcal{A}, B \in \mathcal{B}$	b) $A \subseteq X, B \subseteq Y \& A \in \mathcal{A}, B \notin \mathcal{B}$
c) $A \subseteq X, B \subseteq Y \& A \notin \mathcal{A}, B \notin \mathcal{B}$	d) $A \subseteq X, B \subseteq Y \& A \in \mathcal{A}, B \in \mathcal{B}$

17. Let $E \subseteq X \times Y$, and f be a function on E. Then the x -section of E is a subset of

a) $X \times Y$	b) X
c) <i>Y</i>	d) <i>E</i>

18. Let \mathcal{R} be the collection of measurable rectangles in $X \times Y$ and for a measurable rectangle $A \times B$, define $\lambda(A \times B) = \mu(A).\nu(B)$. Then λ is called a,

a) premeasure	b) outer measure
c) product measure	d) induced measure

19. Let \mathcal{R} be the collection of measurable rectangles in $X \times Y$. Then \mathcal{R} is a,

a) ring	b) group
c) semiring	d) semigroup

20. Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be two measure spaces, $\{A_k \times B_k\}_{k=1}^{\infty}$ be a countable disjoint collection of measurable rectangles whose union is a measurable rectangle $A \times B$, then

a)
$$\mu(A) \times \nu(B) = \sum_{k=1}^{\infty} \mu(A_k) \times \nu(B_k)$$
 b) $\mu(A) \times \nu(B) < \sum_{k=1}^{\infty} \mu(A_k) \times \nu(B_k)$
c) $\mu(A) \times \nu(B) > \sum_{k=1}^{\infty} \mu(A_k) \times \nu(B_k)$ d) $\mu(A) \times \nu(B) \neq \sum_{k=1}^{\infty} \mu(A_k) \times \nu(B_k)$

21.	If $\mu \& \nu$	are com	plete	measures,	then μ	х	νis
-----	-----------------	---------	-------	-----------	------------	---	-----

a) always complete	b) not always complete
c) not at all complete	d) none of these

22. If (X, \mathcal{A}) and (Y, \mathcal{B}) are two measurable spaces , f is \mathcal{A} – measurable, g is \mathcal{B} – measurable, then, fg is,

a) \mathcal{A} – measurable	b) ${\mathcal B}-$ measurable
c) $\mathcal{A} imes \mathcal{B}$ — measurable	d) not measurable

23. Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be two measure spaces. Then Fubini's theorem is valid if

a) $\mu \& u$ are not complete	b) μ is complete
c) $ u$ is not complete	d) ν is complete

24. Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be two measure spaces. Then Tonelli's theorem is valid if

a) only μ is σ — finite	b) both μ & $ u$ are σ — finite
c) only $ u$ if σ — finite	d) both μ & $ u$ need not be σ — finite

25. Fubini's theorem and Tonelli's theorem deals with

a) iterated measures	b) iterated products
c) iterated integrals	d) iterated rectangles
