MCQ (FOR PRIVATE EXAMS) - SEM II- COMPLEX ANALYSIS

1. What is the maximum number of fixed points of a linear fractional transformation?
a) One
b) Two
c) Three
d) Four
2. Identify the fixed points of the linear fractional transformation $w=\frac{2 z}{3 z-1}$.
a) $1,-1$
b) 1,2
c) I, -i
d) 0,1
3. Which of the following is true about a non-constant analytic function?
a) Can be purely real
b) Can be purely imaginary
c) Can have constant modulus
d) None of these
4. Evaluate $\sqrt{3+4 i}$
a) $2-i$
b) $2+i$
c) $\pm(2+i)$
d) $\pm(2-i)$
5. Which of the following is/are true
a) Only real numbers have purely real or purely imaginary square root
b) Only positive real numbers have purely real square root
c) Only negative real numbers have purely imaginary square root
d) All the above are true
6. A single valued analytic branch of $\log z$ can be defined on which of the following regions?
a) Complement of negative real axis
b) Complement of positive real axis
c) Complement of positive imaginary axis
d) Complement of negative imaginary axis.
7. The single valued analytic branch of $\operatorname{Arccos} z$ is
a) $\log \left(z+\sqrt{z^{2}-1}\right)$
b) $i \log \left(z-\sqrt{z^{2}-1}\right)$
c) $i \log \left(z+\sqrt{z^{2}-1}\right)$
d) $-i \log \left(z-\sqrt{z^{2}+1}\right)$
8. Which of the following is an example of an indirectly conformal mapping
a) $f(z)=z^{2}$
b) $f(z)=e^{z}$
c) $f(z)=-z$
d) $f(z)=\bar{z}$
9. Which of the following is not a linear fractional transformation?
a) $S(z)=\frac{3 z+4}{2 z-2}$
b) $S(z)=\frac{z+2}{2 z+5}$
c) $S(z)=\frac{3 z+6}{2 z+4}$
d) $S(z)=\frac{z+1}{2 z-5}$
10. Which of the following is a normalized linear fractional transformation?
a) $S(z)=\frac{z+3}{z-4}$
b) $S(z)=\frac{3 z+2}{4 z+3}$
c) $S(z)=\frac{z+2}{2 z+1}$
d) $S(z)=\frac{z+4}{z-1}$
11. The matrix representation of the basic linear fractional transformation inversion is
a) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
b) $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
c) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
d) $\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$
12. Which of the following represents translation?
a) $\left[\begin{array}{ll}0 & 1 \\ 1 & \alpha\end{array}\right]$
b) $\left[\begin{array}{ll}\alpha & 1 \\ 1 & 0\end{array}\right]$
c) $\left[\begin{array}{ll}1 & \alpha \\ 0 & 1\end{array}\right]$
d) $\left[\begin{array}{ll}0 & 1 \\ \alpha & 0\end{array}\right]$
13. How many linear transformations are there with 1,0 and ∞ are fixed points.
a) One
b) Two
c) Three
d) Four
14. Find the image of the point at infinity under the linear transformation $T(z)=\frac{4 z-3}{5 z+1}$
a) ∞
b) 0
c) $\frac{4}{5}$
d) $\frac{5}{4}$
15. Find the argument of the cross ratio $(1, i,-1,-i)$
a) 0
b) $\frac{\pi}{4}$
c) $\frac{\pi}{2}$
d) $\frac{\pi}{3}$
16. Which of the following is true about the cross ratio $(-1-i, 0,1+i, 2+2 i)$
a) A real number
b) Argument is $\frac{\pi}{4}$
c) Argument is $\frac{3 \pi}{4}$
d) An imaginary number
17. Which of the following can be an analytic function?
a) $f(x, y)=x^{2}+y^{2}$
b) $f(x, y)=x^{2}+2 i$
c) $f(x, y)=4+2(x+y)$
d) None of the above
18. The image of a straight line under a linear transformation is
a) A straight line
b) A circle or a straight line
c) An ellipse
d) A parabola
19. What is the maximum number of distinct cross ratios that can be constructed by permuting four given points?
a) 5
b) 10
c) 6
d) 24
20. If z and z^{*} are symmetric points with respect to a circle passing through the points z_{1}, z_{2}, z_{3} then which of the following is a correct statement.
a) $\left(z, z_{1}, z_{2}, z_{3}\right)=\left(z^{*}, z_{1}, z_{2}, z_{3}\right)$
b) $\left(z, z_{1}, z_{2}, z_{3}\right)=\left(-z^{*}, z_{1}, z_{2}, z_{3}\right)$
c) $\left(\bar{z}, z_{1}, z_{2}, z_{3}\right)=\left(z^{*}, z_{1}, z_{2}, z_{3}\right)$
d) $\left(z, z_{1}, z_{2}, z_{3}\right)=\left(\overline{z^{*}, z_{1}, z_{2}, z_{3}}\right)$
21. The mapping which carries a point z into its symmetric point z^{*} with respect to a given circle is called
a) linear transformation
b) reflection
c) rotation
d) translation
22. Which of the following are true
a) Every linear transformation carries circles in to circles
b) Every reflection carries circles in to circles
c) Every linear transformation preserves symmetry
d) All the above
23. The linear transformation $T(z)=\frac{z}{2 z-1}$ is
a) Elliptic
b) Parabolic
c) Hyperbolic
d) Lexodromic
24. How many points at infinities are there in the complex plane
a) Infinitely many
b) Two
c) Three
d) One
25. If $f(x, y)=x^{2}+2 x y+i V(x, y)$ is analytic then evaluate $\frac{\partial V}{\partial y}$
a) $x+y$
b) $x^{2}+2 x y$
c) $2(x+y)$
d) $x-y$
26. What is the length of the circle with points $z=a+\delta e^{i t}, 0 \leq t \leq 2 \pi$
a) $2 \pi i \delta$
b) $2 \pi \delta$
c) $\pi \delta^{2}$
d) $\pi \delta$
27. What is the length of the arc determined by the points $z=t+i t, 0 \leq t \leq 2$
a) $\sqrt{2}$
b) 4
c) $2 \sqrt{2}$
d) 8
28. Evaluate the integral $\int_{i}^{i / 2} e^{\pi z} \mathrm{dz}$
a) $(1+i) / \pi$
b) $i \pi$
c) $-2 \pi i$
d) $1+i$
29. What is the value of the integral $\int_{0}^{\pi+2 i} \cos \left(\frac{z}{2}\right) d z$
a) π
b) 0
c) $e+\frac{1}{e}$
d) πe
30. Evaluate the integral $\int_{1}^{3}(z-2)^{3} \mathrm{dz}$
a) 0
b) 1
c) 2
d) e
31. Evaluate the integral $\int_{|z|=1} \frac{d z}{z}$
a) 0
b) 1
c) $2 \pi i$
d) 2π
32. What is the value of the integral $\int_{|z|=1} z^{2} d z$
a) 1
b) 0
c) $2 \pi i$
d) 2π
33. Find the integral $\int_{|z|=2} \sin z d z$
a) 0
b) 1
c) π
d) 2π
34. What is the value of $\int_{|z|=1} e^{z} \mathrm{dz}$?
a) 1
b) 0
c) e
d) π
35. Evaluate $\int_{|z|=1} \frac{e^{z}}{z} d z$
a) 0
b) 1
c) π
d) e
36. Evaluate $\int_{|z|=2} \frac{d z}{z^{2}+1}$
a) 0
b) 1
c) 2
d) π
37. Evaluate $\quad \int_{|z|=2} \frac{d z}{z^{2}-1}$
a) 1
b) 0
c) 2
d) i
38. Evaluate $\int_{|z|=1} \frac{d z}{z-2}$
a) 0
b) 1
c) i
d) i π
39. Evaluate $\quad \int_{|z|=1} \frac{d z}{z(z+2)}$
a) 0
b) 1
c) $2 \pi i$
d) $i \pi$
40. Evaluate $\int_{C} \frac{z^{2} d z}{z-3}$ where C is the unit circle
a) 0
b) 1
c) π
d) $i \pi$
41. Let C be the unit circle. Find the value of $\int_{C} z e^{-z} \mathrm{dz}$.
a) e
b) e^{2}
c) 0
d) 1
42. Let $f(z)=\frac{1}{z^{2}+2 z+2}$ and C be the unit circle. Find the value of the integral $\int_{C} f(z) d z$
a) 1
b) 2
c) 0
d) 2 e
43. Let C be the positively oriented circle $|z-i|=2$ and $g(z)=\frac{1}{z^{2}+4}$. Evaluate $\int_{C} g(z) d z$
a) 0
b) 1
c) $\pi / 2$
d) i π
44. Let C be the unit circle $|z-i|=2$ in the positive sense and $f(z)=\frac{1}{z^{2}-1}$. Find $\int_{C} f(z) d z$
a) 1
b) 0
c) π
d) $i \pi$
45. The process of finding the length of an arc is called
a) differentiation
b) integration
c) rectification
d) quadrature
46. What is the antiderivative of $\operatorname{sech}^{2} z$?
a) $\sinh z$
b) $\cosh z$
c) $\tanh z$
d) $\sin \mathrm{Z}$
47. Let γ be any simple closed curve and $f(z)=z e^{z}$. What is the value of $\int_{\gamma} f(z) d z$?
a) 1
b) e
c) π
d) 0
48. Let R be the rectangle bounded by the lines $\operatorname{Re} z= \pm 1, \operatorname{Im} z= \pm 1$ and $f(z)=\sin z$. Find $\int_{\partial R} f(z) d z$?
a) πi
b) 0
c) 1
d) 2π
49. Let γ be any simple closed curve and a be a point outside γ. Also let $f(z)=e^{z}$, evaluate $\int_{\gamma} \frac{f(z) d z}{z-a}$?
a) $2 \pi i$
b) 1
c) 0
d) $-\mathrm{i} \pi$
50. Let $f(z)=e^{z}$ and γ be the positively oriented circle $|z-1|=2$. Evaluate $\int_{\gamma} \frac{f(z) d z}{z-1}$?
a) 1
b) 0
c) $2 \pi i$
d) $2 \pi i e$
51. A non constant entire function is
a) bounded
b) unbounded
c) meromorphic
d) discontinuous
52. An entire function which is bounded in the whole plane is
a) constant
b) meromorphic
c) discontinuous
d) integrable
53. $\int_{\gamma} f(z) d z=0$ for all cycles γ in a region Ω. Then $f(z)$ is
a) constant
b) analytic in Ω
c) entire
d) bounded
54. If $f(a)$ and all derivatives $f^{\mathrm{n}}(\mathrm{a})$ vanish, then $f(z)$ is
a) identically vanishes in the region
b) reduces to a non-zero constant
c) bounded in the whole plane
d) unbounded in the region
.55. Evaluate $\int_{|z|=1} z^{-4} \sin z d z$
a) 0
b) 1
c) $\mathrm{i} \pi$
d) $-\mathrm{i} \pi / 3$
55. Find the value of $\int_{|z|=1} \frac{e^{z}}{z^{3}} d z$.
a) 0
b) 1
c) $i \pi$
d) $2 \pi i$
56. Find the value of $\int_{|z|=1} z^{-2} e^{-z} d z$.
a) 0
b) $i \pi$
c) $2 \pi i$
d) $-2 \pi \mathrm{i}$
57. Evaluate $\int_{|z|=1} e^{z} Z^{-n} d z$.
a) $2 \pi \mathrm{in}$
b) $2 \pi i(n)$!
c) $\frac{2 \pi i}{(n-1)!}$
d) $\frac{2 \pi i}{n!}$
58. $\int_{|z|=1} \frac{\cos h z}{z^{4}} d z=$?.
a) 1
b) 0
c) $2 \pi i$
d) $i \pi$
59. Find $\int_{|z-i|=2} \frac{e^{z}}{(z+1)^{2}} d z$.
a) 1
b) $\frac{2 \pi i}{e}$
c) $2 \pi \mathrm{ie}$
d) $\frac{i \pi}{e}$
60. $\int_{|2|} \frac{e^{2 z}}{z^{4}} d z=$?
a) $\frac{2 \pi i}{3}$
b) $\frac{8 \pi i}{3}$
c) $\frac{i \pi}{3}$
d) $\frac{-i \pi}{3}$
61. $f(z)=\frac{\sin z}{z}$ has a removable singularity at
a) $z=1$
b) $z=-1$
c) $z=0$
d) $Z=\infty$
62. Identify the nature of the singularity of $f(Z)=\frac{\sin z}{z}$ at the origin
a) pole
b) removable singularity
c) essential singularity
d) zero
63. $z=0$ is a pole of the function
a) $f(z)=\frac{e^{z}}{z}$
b) $f(z)=\frac{\sin z}{z}$
c) $f(z)=e^{1 / z}$
d) $f(z)=z \sin \left(\frac{1}{z}\right)$
64. $z=1$ is a r singularity of
a) $\frac{\sin z}{z}$
b) $\frac{\sin (z-1)}{(z-1)}$
c) e^{z-1}
d) $\sin (z-1)$
65. $z=2$ is a double pole of the function
a) $z^{2} e^{z}$
b) $\frac{e^{z}}{z^{2}}$
c) $\frac{e^{z}}{z(z+1)}$
d) $\frac{e^{z}}{z^{3}}$
66. $f(z)=\mathrm{e}^{1 / z}$ has an essential singularity at
a) $\mathrm{z}=1$
b) $z=2$
c) $z=-1$
d) $\mathrm{z}=0$
67. $f(z)=\sin \left(\frac{1}{z-1}\right)$ has an essential singularity at
a) $\mathrm{z}=1$
b) $z=0$
c) $z=-1$
d) $z=\infty$
68. $f(z)=\frac{e^{1 / z}}{(z-1)}$ has an essential singularity at
a) $\mathrm{z}=0$
b) $\mathrm{z}=1$
c) $z=-1$
d) $z=2$
69. $f(z)=\frac{e^{1 / z}}{(z+1)}$ has a simple pole at
a) $\mathrm{z}=0$
b) $\mathrm{z}=1$
c) $z=-1$
d) $z=\infty$
70. $f(z)=\frac{1}{\sin \pi z}$ has a non isolated essential singularity at
a) $\mathrm{z}=0$
b) $z=1$
c) $z=-1$
d) $\mathrm{z}=2$
71. Evaluate $\int_{|z|=2} \frac{(z-2)}{\left(z^{2}-4 z+3\right)} d z$.
a) 1
b) 2
c) $i \pi$
d) $2 \pi i$
72. Find the value of $\int_{|z|=2} \frac{2 z-1}{z^{2}-z} d z$.
a) 0
b) $i \pi$
c) $2 \pi i$
d) $4 \pi \mathrm{i}$
73. Find the value of $\int_{|z|=2} \frac{z}{z^{2}+1} d z$.
a) $i \pi$
b) $2 \pi i$
c) $-i \pi$
d) $-2 \pi \mathrm{i}$
74. Find the value of $\int_{|z|=1} \frac{3 z^{2}-4}{z^{3}-4 z} d z$.
a) $i \pi$
b) $-\mathrm{i} \pi$
c) $2 \pi i$
d) 0
75. Which of the following properties do not change the identity of a chain of arcs:
a) Permutation of two arcs
b) Subdivision of an arc
c) Cancellation of opposite arcs
d) All of the above
76. An integral along a simple closed curve is called a
a) Multiple integral
b) Jordan integral
c) Contour integral
d) None of the above
77. A region which is not simply connected is called \qquad region.
a) Multiple curve
b) Jordan connected
c) Connected curve
d) Multiply connected
78. For all cycles γ in Ω and all points a which do not belong to Ω, the region Ω is simply connected if and only if
a) $n(\gamma, a)<0$
b) $n(\gamma, a)=0$
c) $n(\gamma, a)>0$
d) None of the above
79. If $f(z)$ is analytic and $f^{\prime}(z)$ is continuous at all points inside and on a simple closed curve γ, then
a) $\oint_{\gamma} f(z) d z=0$
b) $\oint_{\gamma} f(z) d z \neq 0$
c) $\oint_{\gamma} f(z) d z=1$
d) $\oint_{\gamma} f(z) d z \neq 1$
80. If $f(z)$ is analytic and $f^{\prime}(z)$ is continuous at all points in the region bounded by the simple closed curves γ_{1} and γ_{2}, then
a) $\oint_{\gamma_{1}} f(z) d z=\oint_{\gamma_{2}} f(z) d z$
b) $\oint_{\gamma_{1}} f(z) d z \neq \oint_{\gamma_{2}} f(z) d z$
c) $\oint_{\gamma_{1}} f(z) d z=\oint_{\gamma_{2}} f^{\prime}(z) d z$
d) $\oint_{\gamma_{1}} f(z) d z \neq \oint_{\gamma_{2}} f^{\prime}(z) d z$
81. A point z_{0} at which a function $\mathrm{f}(\mathrm{z})$ is not analytic is known as a \qquad of $f(z)$.
a) Residue
b) Singularity
c) Winding number
d) None of these
82. The value of $\oint_{C} \frac{1}{z^{2}+4} d z$ where C is the circle $|\mathrm{z}-2 \mathrm{i}|=1$ will be:
a) 0
b) $1 / 5$
c) $\frac{\pi}{2}$
d) $\frac{2}{3}$
83. Let $f(z)=\frac{1}{z^{2}+6 z+9}$ defined in the complex plane. The integral $\oint_{C} f(z) d z$ over the contour of a circle with centre at the origin and unit radius is \qquad
a) 3π
b) $\pi i / 2$
c) 0
d) 1
84. The value of the integral $\oint_{C} \frac{z+1}{z^{2}-4} d z$ in counter clockwise direction around a circle C of radius 1 with center at the point $\mathrm{z}=-2$ is \qquad .
a) $\pi i / 2$
b) $2 \pi i$
c) $-\pi i / 2$
d) $-2 \pi i$
85. The value of the integral $\oint_{C} \operatorname{Cos} 2 \pi z d z$, where $\mathrm{C}:|\mathrm{z}|=1$ is
a) $2 \pi i$
b) $4 \pi i$
c) $-2 \pi i$
d) 0
86. If $p d x+q d y$ is locally exact in a simply connected region Ω, then for every cycle $\gamma \sim 0$ in Ω,
a) $\oint_{\gamma} p d x+q d y \neq 0$
b) $\oint_{\gamma} p d x+q d y=0$
c) $\oint_{\gamma} p d x+q d y \geq 0$
d) $\oint_{\gamma} p d x+q d y \leq 0$
87. The single valued analytic branch of $\log z$ can be defined in any simply connected region which does not contain
a) The positive real axis
b) The negative real axis
c) The origin
d) None of the above
88. The poles of $f(z)=\frac{z-2}{z^{2}} \sin \left(\frac{1}{z-1}\right)$ is \qquad
a) 2
b) 0
c) 1
d) None of these
89. The poles of $f(z)=\frac{z^{2}+1}{1-z^{2}}$ is \qquad
a) 1
b) -1
c) ± 1
d) 0
90. The residue of $f(z)=\cot z$ at each poles is $\ldots \ldots$.
a) 0
b) 1
c) $1 / 2$
d) None of these
91. If $f(a)=0$ and $f^{\prime}(a) \neq 0$, then $z=a$ is called a \qquad
a) Simple zero
b) Simple curve
c) Zero of order n
d) None of these
92. An integral of the form $\int_{-\infty}^{\infty} R(x) d x$ converges if and only if in the rational function R(x)
a) The degree of the denominator is at least one unit higher than the degree of the numerator and if one pole lies on the real axis
b) The degree of the denominator is at least two units higher than the degree of the numerator and if no pole lies on the real axis
c) The degree of the denominator is at least two units higher than the degree of the numerator and if no pole lies on the imaginary axis
d) The degree of the denominator is at least one units higher than the degree of the numerator and if no pole lies on the imaginary axis
93. How many roots of the equation $z^{4}-6 z+3=0$ have their modulus between 1 and 2 ?
a) 0
b) 1
c) 2
d) 3
94. The residue of $f(z)$ at an isolated singularity a is the unique complex number R which makes \qquad the derivative of a single valued analytic function in an annulus $0<|z-a|<\delta$.
a) $f(z)-\frac{R}{z-a}$
b) $f(z)-\frac{R^{2}}{z-a}$
c) $f(z)-\frac{R}{(z-a)^{2}}$
d) None of these
95. If $f(z)$ is analytic in a region Ω, then for every cycle γ which I homologous to zero in $\Omega, \frac{1}{2 \pi i} \int_{\gamma} \frac{f(z) d z}{z-a}=$ \qquad
a) $n(\gamma, a) f(a)$
b) $n(\gamma, a) f^{\prime}(a)$
c) $n(\gamma, a) f "(a)$
d) None of these
96. If $n(\gamma, a)$ is defined and equal to 1 for all points $a \in \Omega$ and either undefined or equal to zero for all points a not in Ω. Then the cycle γ is said to \qquad the region Ω.
a) Wind
b) Unbound
c) Bound
d) None of the above
97. If $f(z)$ is meromorphic in a region Ω with the zeros a_{j} and the poles b_{k}, then for every cycle γ which is homologous to zero in Ω and does not pass through any of the zeros or poles

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{j} n\left(\gamma, a_{j}\right)-\sum_{k} n\left(\gamma, b_{k}\right)
$$

The above stated theorem is:
a) Rouche's theorem
b) Argument principle
c) Residue theorem
d) None of the above
99. To find the number of zeros of an analytic function $f(z)$ in the disc $|z| \leq R$, we can use the following theorem:
a) Residue theorem
b) Cauchy's integral theorem
c) Rouche's theorem
d) None of the above
100.The integral of an exact differential over any cycle is
a) Zero
b) Infinite
c) Not defined
d) A finite number other than zero

