MCQ (FOR PRIVATE EXAMS) – SEM II- COMPLEX ANALYSIS

1. What is the maximum number of fixed points of a linear fractional transformation?

a) One

- b) Two
- c) Three
- d) Four
- 2. Identify the fixed points of the linear fractional transformation $w = \frac{2z}{3z-1}$.
 - a) 1, -1
 - b) 1,2
 - c) I, -i
 - d) 0,1
- 3. Which of the following is true about a non-constant analytic function?
 - a) Can be purely real
 - b) Can be purely imaginary
 - c) Can have constant modulus
 - d) None of these
- 4. Evaluate $\sqrt{3+4i}$
 - a) 2*-i*
 - b) 2 + i
 - c) $\pm (2+i)$
 - d) $\pm (2-i)$
- 5. Which of the following is/are true
 - a) Only real numbers have purely real or purely imaginary square root
 - b) Only positive real numbers have purely real square root
 - c) Only negative real numbers have purely imaginary square root
 - d) All the above are true
- 6. A single valued analytic branch of $\log z$ can be defined on which of the following regions?
 - a) Complement of negative real axis
 - b) Complement of positive real axis
 - c) Complement of positive imaginary axis
 - d) Complement of negative imaginary axis.
- 7. The single valued analytic branch of $Arc\cos z$ is

a)
$$\log(z + \sqrt{z^2 - 1})$$

b) $i \log(z - \sqrt{z^2 - 1})$
c) $i \log(z + \sqrt{z^2 - 1})$
d) $-i \log(z - \sqrt{z^2 + 1})$

- 8. Which of the following is an example of an indirectly conformal mapping
 - a) $f(z) = z^2$ b) $f(z) = e^z$ c) f(z) = -zd) $f(z) = \overline{z}$
- 9. Which of the following is not a linear fractional transformation?

a)
$$S(z) = \frac{3z+4}{2z-2}$$

b) $S(z) = \frac{z+2}{2z+5}$
c) $S(z) = \frac{3z+6}{2z+4}$
d) $S(z) = \frac{z+1}{2z-5}$

10. Which of the following is a normalized linear fractional transformation?

a)
$$S(z) = \frac{z+3}{z-4}$$

b) $S(z) = \frac{3z+2}{4z+3}$
c) $S(z) = \frac{z+2}{2z+1}$
d) $S(z) = \frac{z+4}{z-1}$

11. The matrix representation of the basic linear fractional transformation inversion is

a)
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

b)
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

c)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

d)
$$\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

12. Which of the following represents translation?

a)
$$\begin{bmatrix} 0 & 1 \\ 1 & \alpha \end{bmatrix}$$

b)
$$\begin{bmatrix} \alpha & 1 \\ 1 & 0 \end{bmatrix}$$

c)
$$\begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix}$$

d)
$$\begin{bmatrix} 0 & 1 \\ \alpha & 0 \end{bmatrix}$$

13. How many linear transformations are there with 1,0 and ∞ are fixed points.

- a) One b) Two
- c) Three
- d) Four

14. Find the image of the point at infinity under the linear transformation $T(z) = \frac{4z-3}{5z+1}$

a) ∞ b) 0 c) $\frac{4}{5}$ d) $\frac{5}{4}$

15. Find the argument of the cross ratio (1, i, -1, -i)

a) 0 b) $\frac{\pi}{4}$ c) $\frac{\pi}{2}$ d) $\frac{\pi}{3}$

16. Which of the following is true about the cross ratio (-1-i, 0, 1+i, 2+2i)

- a) A real number
- b) Argument is $\frac{\pi}{4}$ c) Argument is $\frac{3\pi}{4}$

d) An imaginary number

- 17. Which of the following can be an analytic function?
 - a) $f(x, y) = x^2 + y^2$
 - b) $f(x, y) = x^2 + 2i$
 - c) f(x, y) = 4 + 2(x + y)
 - d) None of the above

18. The image of a straight line under a linear transformation is

a) A straight line

b) A circle or a straight line

c) An ellipse

d) A parabola

- 19. What is the maximum number of distinct cross ratios that can be constructed by permuting four given points?
 - a) 5
 - b) 10
 - c) 6
 - d) 24
- 20. If z and z^* are symmetric points with respect to a circle passing through the points z_1, z_2, z_3 then which of the following is a correct statement.

a)
$$(z, z_1, z_2, z_3) = (z^*, z_1, z_2, z_3)$$

b) $(z, z_1, z_2, z_3) = (-z^*, z_1, z_2, z_3)$
c) $(\overline{z}, z_1, z_2, z_3) = (z^*, z_1, z_2, z_3)$
d) $(z, z_1, z_2, z_3) = \overline{(z^*, z_1, z_2, z_3)}$

- 21. The mapping which carries a point z into its symmetric point z^* with respect to a given circle is called
 - a) linear transformation
 - b) reflection
 - c) rotation
 - d) translation
- 22. Which of the following are true
 - a) Every linear transformation carries circles in to circles
 - b) Every reflection carries circles in to circles
 - c) Every linear transformation preserves symmetry
 - d) All the above

23. The linear transformation $T(z) = \frac{z}{2z-1}$ is

- a) Elliptic
- b) Parabolic
- c) Hyperbolic
- d) Lexodromic
- 24. How many points at infinities are there in the complex plane
 - a) Infinitely many
 - b) Two
 - c) Three
 - d) One

25. If $f(x, y) = x^2 + 2xy + iV(x, y)$ is analytic then evaluate $\frac{\partial V}{\partial y}$ a) x + y

b) $x^2 + 2xy$

c) 2(x+y)d) x-y

26. What is the length of the circle with points $z = a + \delta e^{it}$, $0 \le t \le 2\pi$

a) 2πiδ
b) 2πδ
c) πδ²
d) πδ

27. What is the length of the arc determined by the points z = t + it, $0 \le t \le 2$

a) $\sqrt{2}$ b) 4 c) $2\sqrt{2}$ d) 8 28. Evaluate the integral $\int_{i}^{i/2} e^{\pi z} dz$ a) $(1 + i)/\pi$ b) *iπ* c) −2*πi* d) 1 + *i* 29. What is the value of the integral $\int_0^{\pi+2i} \cos\left(\frac{z}{2}\right) dz$ a) π b) 0 c) $e + \frac{1}{\rho}$ d) πe 30. Evaluate the integral $\int_1^3 (z-2)^3 dz$ a) 0 b) 1 c) 2 d) e 31. Evaluate the integral $\int_{|z|=1} \frac{dz}{z}$ a) 0 b) 1 c) 2πi d) 2π 32. What is the value of the integral $\int_{|z|=1} z^2 dz$ a) 1 b) 0 c) 2πi d) 2π

33. Find the integral $\int_{|z|=2} \sin z \, dz$ a) 0 b) 1 c) π d) 2π 34. What is the value of $\int_{|z|=1} e^z dz$? a) 1 b) 0 c) e d) π 35. Evaluate $\int_{|z|=1} \frac{e^z}{z} dz$ a) 0 b) 1 c) π d) e 36. Evaluate $\int_{|z|=2} \frac{dz}{z^2+1}$ a) 0 b) 1 c) 2 d) π 37. Evaluate $\int_{|z|=2} \frac{dz}{z^2-1}$ a) 1 b) 0 c) 2 d) *i* 38. Evaluate $\int_{|z|=1} \frac{dz}{z-2}$ a) 0 b) 1 c) i d) iπ 39. Evaluate $\int_{|z|=1} \frac{dz}{z(z+2)}$ a) 0 b) 1 c) 2πi d) iπ 40. Evaluate $\int_C \frac{z^2 dz}{z-3}$ where *C* is the unit circle a) 0 b) 1

c) π d) iπ

41. Let *C* be the unit circle. Find the value of $\int_C ze^{-z} dz$.

a) eb) e^{2} c) 0 d) 1 42. Let $f(z) = \frac{1}{z^{2}+2z+2}$ and C be the unit circle. Find the value of the integral $\int_{C} f(z)dz$ a) 1 b) 2 c) 0 d) 2e 43. Let C be the positively oriented circle |z - i| = 2 and $q(z) = \frac{1}{2}$. Evaluate

43. Let *C* be the positively oriented circle |z - i| = 2 and $g(z) = \frac{1}{z^2 + 4}$. Evaluate $\int_{C} g(z) dz$

a) 0 b) 1 c) π/2 d) iπ

44. Let C be the unit circle |z - i| = 2 in the positive sense and $f(z) = \frac{1}{z^2 - 1}$. Find

- $\int_C f(z)dz$
 - a) 1
 - b) 0
 - c) π
 - d) iπ

45. The process of finding the length of an arc is called \dots .

- a) differentiation
- b) integration
- c) rectification
- d) quadrature
- 46. What is the antiderivative of $sech^2 z$?
 - a) $\sinh z$
 - b) cosh z
 - c) tanh z
 - d) sin z

47. Let γ be any simple closed curve and $f(z) = ze^{z}$. What is the value of $\int_{\gamma} f(z) dz$?

- a) 1
- b) e
- c) π
- d) 0

48. Let *R* be the rectangle bounded by the lines Re $z = \pm 1$, Im $z = \pm 1$ and $f(z) = \sin z$.

Find $\int_{\partial R} f(z) dz$? a) πi b) 0 c) 1 d) 2 π

49. Let γ be any simple closed curve and a be a point outside γ . Also let $f(z) = e^z$,

evaluate $\int_{\gamma} \frac{f(z) dz}{z-a}$? a) 2 πi b) 1 c) 0 d) $-i\pi$ 50. Let $f(z) = e^{z}$ and γ be the positively oriented circle |z - 1| = 2. Evaluate $\int_{\gamma} \frac{f(z) dz}{z-1}$? a) 1 b) 0

- c) 2 πi
- d) $2\pi i e$

51. A non constant entire function is

- a) bounded
- b) unbounded
- c) meromorphic
- d) discontinuous

52. An entire function which is bounded in the whole plane is

- a) constantb) meromorphicc) discontinuous
- c) discontinuous
- d) integrable

53. $\int_{\gamma} f(z) dz = 0$ for all cycles γ in a region Ω . Then f(z) is

a) constant
b) analytic in Ω
c) entire
d) bounded

54. If f(a) and all derivatives $f^{n}(a)$ vanish, then f(z) is

- a) identically vanishes in the region
- b) reduces to a non-zero constant

c) bounded in the whole plane d) unbounded in the region .55. Evaluate $\int_{|z|=1} z^{-4} \sin z \, dz$ a) 0 b) 1 c) iπ d) -iπ/ 3 56. Find the value of $\int_{|z|=1} \frac{e^z}{z^3} dz$. a) 0 b) 1 c) iπ d) 2πi 57. Find the value of $\int_{|Z|=1} z^{-2} e^{-z} dz$. a) 0 b) iπ c) 2πi d) -2πi 58. Evaluate $\int_{|z|=1} e^z z^{-n} dz$. a) $2\pi in$ b) 2πi(n)! c) $\frac{2\pi i}{(n-1)!}$ d) $\frac{2\pi i}{n!}$ 59. $\int_{|z|=1} \frac{\cos hz}{z^4} dz = ?.$ a) 1 b) 0 c) 2πi d) iπ 60. Find $\int_{|z-i|=2} \frac{e^z}{(z+1)^2} dz$. a) 1 b) $\frac{2\pi i}{e}$ c) 2πie d) $\frac{i\pi}{e}$

61.
$$\int_{|2|} \frac{e^{2z}}{z^4} dz = ?$$

a) $\frac{2\pi i}{3}$
b) $\frac{8\pi i}{3}$
c) $\frac{i\pi}{3}$
d) $\frac{-i\pi}{3}$

62. $f(z) = \frac{\sin z}{z}$ has a removable singularity at

a) z = 1b) z = -1c) z = 0d) $z = \infty$

63. Identify the nature of the singularity of $f(Z) = \frac{\sin z}{z}$ at the origin

a) poleb) removable singularityc) essential singularityd) zero

64. z = 0 is a pole of the function

a)
$$f(z) = \frac{e^z}{z}$$

b) $f(z) = \frac{\sin z}{z}$
c) $f(z) = e^{1/z}$
d) $f(z) = z \sin(\frac{1}{z})$

65. z = 1 is a r singularity of

a)
$$\frac{\sin z}{z}$$

b)
$$\frac{\sin (z-1)}{(z-1)}$$

c)
$$e^{z-1}$$

d)
$$\sin(z-1)$$

66. z = 2 is a double pole of the function

a)
$$z^2 e^z$$

b) $\frac{e^z}{z^2}$
c) $\frac{e^z}{z(z+1)}$
d) $\frac{e^z}{z^3}$

67. $f(z) = e^{1/z}$ has an essential singularity at

a) z = 1 b) z = 2 c) z= -1 d) z = 0 68. $f(z) = \sin(\frac{1}{z-1})$ has an essential singularity at a) z = 1 b) z = 0c) z = -1 d) $z = \infty$ 69. $f(z) = \frac{e^{1/z}}{(z-1)}$ has an essential singularity at a) z = 0 b) z= 1 c) z = -1 d) z = 2 70. $f(z) = \frac{e^{1/z}}{(z+1)}$ has a simple pole at a) z = 0 b) z= 1 c) z = -1 d) $z = \infty$ 71. $f(z) = \frac{1}{\sin \pi z}$ has a non isolated essential singularity at a) z = 0 b) z = 1 c) z = -1 d) z = 2 72. Evaluate $\int_{|z|=2} \frac{(z-2)}{(z^2-4z+3)} dz$. a) 1 b) 2 c) iπ d) 2πi 73. Find the value of $\int_{|z|=2} \frac{2z-1}{z^2-z} dz$. a) 0 b) iπ c) 2πi d) 4πi

74. Find the value of $\int_{|z|=2} \frac{z}{z^2+1} dz$.

a) iπ
b) 2πi
c) - iπ
d) - 2πi

75. Find the value of $\int_{|z|=1} \frac{3z^2 - 4}{z^3 - 4z} dz$.

a) $i\pi$

b) $-i\pi$

- c) 2πi
- d) 0
- 76. Which of the following properties do not change the identity of a chain of arcs:
 - a) Permutation of two arcs
 - b) Subdivision of an arc
 - c) Cancellation of opposite arcs
 - d) All of the above
- 77. An integral along a simple closed curve is called a
 - a) Multiple integral
 - b) Jordan integral
 - c) Contour integral
 - d) None of the above
- 78. A region which is not simply connected is called region.
 - a) Multiple curve
 - b) Jordan connected
 - c) Connected curve
 - d) Multiply connected
- 79. For all cycles γ in Ω and all points a which do not belong to Ω , the region Ω is simply connected if and only if
 - a) $n(\gamma, a) < 0$
 - b) $n(\gamma, a) = 0$
 - c) $n(\gamma, a) > 0$
 - d) None of the above
- 80. If f(z) is analytic and f'(z) is continuous at all points inside and on a simple closed curve γ , then
 - a) $\oint_{\gamma} f(z)dz = 0$
 - b) $\oint_{v} f(z)dz \neq 0$
 - c) $\oint_{\gamma} f(z)dz = 1$
 - d) $\oint_{\gamma} f(z) dz \neq 1$
- 81. If f(z) is analytic and f'(z) is continuous at all points in the region bounded by the simple closed curves γ_1 and γ_2 , then
 - a) $\oint_{\gamma_1} f(z)dz = \oint_{\gamma_2} f(z)dz$ b) $\oint_{\gamma_1} f(z)dz \neq \oint_{\gamma_2} f(z)dz$

c) $\oint_{\gamma_1} f(z)dz = \oint_{\gamma_2} f'(z)dz$

d)
$$\oint_{\gamma_1} f(z) dz \neq \oint_{\gamma_2} f'(z) dz$$

82. A point z_0 at which a function f(z) is not analytic is known as a of f(z).

- a) Residue
- b) Singularity
- c) Winding number
- d) None of these

83. The value of $\oint_C \frac{1}{z^2+4} dz$ where C is the circle |z-2i|=1 will be:

- a) 0
- b) 1/5
- c) $\frac{\pi}{2}$ d) $\frac{\pi}{3}$
- 84. Let $f(z) = \frac{1}{z^2 + 6z + 9}$ defined in the complex plane. The integral $\oint_C f(z) dz$ over the contour of a circle with centre at the origin and unit radius is
 - a) 3π
 - b) $\pi i/2$
 - c) 0
 - d) 1

85. The value of the integral $\oint_C \frac{z+1}{z^2-4} dz$ in counter clockwise direction around a circle C of radius 1 with center at the point z=-2 is

- a) $\pi i/2$
- b) 2*πi*
- c) $-\pi i/2$
- d) -2πi

86. The value of the integral $\oint_C \cos 2\pi z \, dz$, where C: |z|=1 is

- a) 2*πi*
- b) 4*πi*
- c) $-2\pi i$
- d) 0
- 87. If p dx + q dy is locally exact in a simply connected region Ω , then for every cycle $\gamma \sim 0$ in Ω ,
 - a) $\oint_{v} p \, dx + q \, dy \neq 0$
 - b) $\oint_{v} p \, dx + q \, dy = 0$
 - c) $\oint_{V} p \, dx + q \, dy \ge 0$
 - d) $\oint_{v} p \, dx + q \, dy \le 0$
- 88. The single valued analytic branch of $\log z$ can be defined in any simply connected region which does not contain
 - a) The positive real axis
 - b) The negative real axis
 - c) The origin
 - d) None of the above

89. The poles of $f(z) = \frac{z-2}{z^2} \sin(\frac{1}{z-1})$ is a) 2 b) 0 c) 1 d) None of these 90. The poles of $f(z) = \frac{z^2 + 1}{1 - z^2}$ is a) 1 b) -1 c) ±1 d) 0 91. The residue of $f(z) = \cot z$ at each poles is a) 0 b) 1 c) ¹/₂ d) None of these 92. If f(a) = 0 and $f'(a) \neq 0$, then z = a is called a a) Simple zero

- b) Simple curve c) Zero of order n
- d) None of these

93. An integral of the form $\int_{-\infty}^{\infty} R(x) dx$ converges if and only if in the rational function R(x)

- a) The degree of the denominator is at least one unit higher than the degree of the numerator and if one pole lies on the real axis
- b) The degree of the denominator is at least two units higher than the degree of the numerator and if no pole lies on the real axis
- c) The degree of the denominator is at least two units higher than the degree of the numerator and if no pole lies on the imaginary axis
- d) The degree of the denominator is at least one units higher than the degree of the numerator and if no pole lies on the imaginary axis
- 94. How many roots of the equation $z^4 6z + 3 = 0$ have their modulus between 1 and 2?
 - a) 0
 - b) 1
 - c) 2
 - d) 3
- 95. The residue of f(z) at an isolated singularity a is the unique complex number R which makes the derivative of a single valued analytic function in an annulus $0 < |z - a| < \delta$.

a)
$$f(z) - \frac{R}{r}$$

$$z = 0$$

 R^2

- b) $f(z) \frac{R^2}{z-a}$ c) $f(z) \frac{R}{(z-a)^2}$
- d) None of these

- 96. If f(z) is analytic in a region Ω , then for every cycle γ which I homologous to zero in $\Omega, \frac{1}{2\pi i} \int_{\gamma} \frac{f(z) \, dz}{z-a} = \dots$
 - - a) $n(\gamma, a)f(a)$
 - b) $n(\gamma, a)f'(a)$
 - c) $n(\gamma, a)f''(a)$
 - d) None of these
- 97. If $n(\gamma, a)$ is defined and equal to 1 for all points $a \in \Omega$ and either undefined or equal to zero for all points a not in Ω . Then the cycle γ is said to the region Ω .
 - a) Wind
 - b) Unbound
 - c) Bound
 - d) None of the above
- 98. If f(z) is meromorphic in a region Ω with the zeros a_i and the poles b_k , then for every cycle γ which is homologous to zero in Ω and does not pass through any of the zeros or poles

$$\frac{1}{2\pi i}\int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{j} n(\gamma, a_{j}) - \sum_{k} n(\gamma, b_{k})$$

The above stated theorem is:

- a) Rouche's theorem
- b) Argument principle
- c) Residue theorem
- d) None of the above
- 99. To find the number of zeros of an analytic function f(z) in the disc $|z| \le R$, we can use the following theorem:
 - a) Residue theorem
 - b) Cauchy's integral theorem
 - c) Rouche's theorem
 - d) None of the above
- 100. The integral of an exact differential over any cycle is
 - a) Zero
 - b) Infinite
 - c) Not defined
 - d) A finite number other than zero