Real Analysis- First Semester

- 1. Which of the following functions is monotonically decreasing when x > 0?
 - A. 2x + 3
 - B. e^x
 - C. $\frac{1}{x}$
 - D. logx
- 2. Which of the following functions is monotonically increasing in the interval $(-\infty, \infty)$?
 - A. x^3
 - B. <u>1</u>
 - C. sinx
 - D. |x|
- 3. Strictly increasing function is defined as
 - A. If $x_1 < x_2$ then $f(x_1) = f(x_2)$
 - B. If $x_1 < x_2$ then $f(x_1) < f(x_2)$
 - C. If $x_1 < x_2$ then $f(x_1) > f(x_2)$
 - D. None of the above
- 4. Strictly decreasing function is defined as
 - A. If $x_1 < x_2$ then $f(x_1) = f(x_2)$
 - B. If $x_1 < x_2$ then $f(x_1) < f(x_2)$
 - C. If $x_1 < x_2$ then $f(x_1) > f(x_2)$
 - D. None of the above
- 5. Let f be a real valued function defined on [a, b] and $c \in (a, b)$ then c is called a jump of discontinuity of f if
 - A. f(c +) f(c -) > 0
 - B. f(c +) f(c -) = 0
 - C. f(c) f(c-) = 0
 - D. f(c +) f(c) = 0
- 6. Find the point of discontinuity of the function $f(x) = \frac{1}{x-2}$.
 - A. -2
 - B. 0
 - C. 2
 - D. 1
- 7. Which of the following is not a partition of [0,1].
 - A. {0, 0.2, 0.4, 0.6, 0.8}
 - B. {0, 0.3, 06, 0.7, 1}
 - C. $\{0, 0.3, 0.6, 0.9, 1\}$
 - D. $\{0, 0.5, 1\}$)
- 8. Find the length of the second subinterval of the partition {1, 1.3, 1.5, 1.9, 2}.
 - A. 0.1
 - B. 0.2
 - C. 0.3
 - D. 0.4
- 9. Which of the following functions are bounded?
 - A. *x*
 - B. $\frac{1}{x}$

C.	1		
	$1+x^{2}$		

- D. tanx
- 10. Assume that f and g are each of bounded variation on [a, b]. Which of the following function need not be of bounded variation?
 - A. f + g
 - B. f g
 - C. f * g
 - D. $f \div g$
- 11. If f is monotonic function on [a, b]
 - A. *f* is bounded variation
 - B. *f* is unbounded
 - C. The set of discontinuities of f are uncountable
 - D. None of the above
- 12. A function of bounded variation is
 - A. Necessarily bounded
 - B. Necessarily unbounded
 - C. May be bounded or unbounded
 - D. None of the above
- 13. f is of bounded variation on [a, b] if and only if
 - A. f is the difference of two increasing real valued functions on [a, b]
 - B. f is the product of two increasing real valued functions on [a, b]
 - C. f is the quotient of two increasing real valued functions on [a, b]
 - D. None of the above
- 14. If f is bounded variation on [a, b] Then total variation on [a, b] is
 - A. Non negative finite number
 - B. Non positive finite number
 - C. Extended real number
 - D. None of the above
- 15. The total variation of f on [a, b] is 0 then
 - A. *f* is continuous
 - B. f is constant
 - C. f is monotonic
 - D. None of the above
- 16. Assume that f and g are each of bounded variation on [a, b]. Then
 - A. $v_{f+g} = v_f + v_g$
 - B. $v_{f+g} \le v_f + v_g$
 - C. $v_{f+g} \ge v_f + v_g$
 - D. None of the above
- 17. Assume that f and g are each of bounded variation on [a, b]. Then
 - A. $v_{f-g} = v_f + v_g$
 - B. $v_{f-g} \leq v_f + v_g$
 - C. $v_{f-g} \ge v_f + v_g$
 - D. None of the above
- 18. Assume that f and g are each of bounded variation on [a, b]. Then
 - A. $v_{f,q} = A.v_f + B.v_q$
 - B. $v_{f,g} \leq A.v_f + B.v_g$
 - C. $v_{f,g} \ge A.v_f + B.v_g$
 - D. None of the above
- 19. If f is bounded variation on [a,b] and $c \in (a,b)$, Then

```
A. v_f(a, b) \le v_f(a, c) + v_f(c, b)
```

B.
$$v_f(a, b) \ge v_f(a, c) + v_f(c, b)$$

C.
$$v_f(a, b) = v_f(a, c) + v_f(c, b)$$

- D. None of the above
- 20. Which of the following function trace out the unit circle $x^2 + y^2 = 1$
 - A. $e^{-2\pi i}$
 - B. $sin\pi z$
 - C. $cos\pi z$
 - D. $tan\pi z$
- 21. The length of any inscribed polygon is ----- that of the curve.
 - A. Greater than or equal to
 - B. Less than or equal to
 - C. Strictly Greater than
 - D. Equal to
- 22. Let $\vec{f}: [a, b] \to \mathbb{R}^n$ be a path in \mathbb{R}^n . Then its arc length

A.
$$\Lambda_{\overrightarrow{f}}(a,b) = Sup\{\Lambda_{\overrightarrow{f}}(P): P \in \mathcal{P}[a,b]\}$$

B.
$$\Lambda_{\overrightarrow{f}}(a,b) = Inf \left\{ \Lambda_{\overrightarrow{f}}(P) : P \in \mathcal{P}[a,b] \right\}$$

C.
$$\Lambda_{\overrightarrow{f}}(a,b) = Min\{\Lambda_{\overrightarrow{f}}(P): P \in \mathcal{P}[a,b]\}$$

- D. None of the above
- 23. Let $\vec{f}: [a, b] \to \mathbb{R}^n$ be a path in \mathbb{R}^n with components $\vec{f} = (f_1, f_2, ..., f_n)$. Then

A.
$$\Lambda_{\overrightarrow{f}}(a,b) \leq v_1(a,b) + v_2(a,b) + \dots + v_n(a,b)$$

B.
$$\Lambda_{\vec{f}}(a,b) \ge v_1(a,b) + v_2(a,b) + \dots + v_n(a,b)$$

- C. $\Lambda_{\vec{f}}(a,b) = v_1(a,b) + v_2(a,b) + \dots + v_n(a,b)$
- D. None of the above
- 24. Let $\vec{f} = (f_1, f_2, ..., f_n)$ be a rectifiable path defined on [a, b] and $c \in (a, b)$. Then

A.
$$\Lambda_{\overrightarrow{f}}(a,b) \leq \Lambda_{\overrightarrow{f}}(a,c) + \Lambda_{\overrightarrow{f}}(c,b)$$

B.
$$\Lambda_{\overrightarrow{f}}(a,b) \ge \Lambda_{\overrightarrow{f}}(a,c) + \Lambda_{\overrightarrow{f}}(c,b)$$

C.
$$\Lambda_{\overrightarrow{f}}(a,b) = \Lambda_{\overrightarrow{f}}(a,c) + \Lambda_{\overrightarrow{f}}(c,b)$$

- D. None of the above
- 25. Let $\vec{f}: [a, b] \to \mathbb{R}^n$ and $\vec{g}: [c, d] \to \mathbb{R}^n$ be two paths in \mathbb{R}^n , each of which is one to one on its domain. Let $u: [c, d] \to [a, b]$ be the real valued function satisfying

$$\overrightarrow{g}(t) = \overrightarrow{f}(u(t))$$
. Then

- A. *u* is continuous and strictly monotonic
- B. *u* is continuous and monotonic
- C. u is monotonic
- D. None of the above
- 26. Let I = [3,12] be a closed and bounded interval in R. let $P_1 = (3,5,9,12)$ and

$$P_2 = (3,4,5,7,9,11,12)$$
, $P_3 = (3,9,12)$ be any three partitions of *I* then

- A) P_2 is a refinement of P_1 and P_3 is a refinement of P_1
- B) P_1 is a refinement of P_2 and P_2 is a refinement of P_3
- C) P_2 is a refinement of P_3 and P_1 is a refinement of P_3
- D) P_2 is a refinement of P_1 and P_1 is a refinement of P_3
- 27. Upper Riemann Stieltjes integral of f with respect to α over [a, b] is
 - A) Sup $\{L(P, f, \alpha)\}$

- B) $Inf \{L(P, f, \alpha)\}$
- C) $Inf \{U(P, f, \alpha)\}$
- D) $Sup\{U(P, f, \alpha)\}$
- 28. Let I = [1,13] be closed and bounded interval in R. Let P = (1,2,5,9,12,13) be any partition of I, then ||P|| is
 - A) 3
 - B) 4
 - C) 2
 - D) 1
- 29. Let f(x) be a bounded real valued function defined on [a, b] and $\alpha(x)$ is monotonicallty

increasing on [a, b].Let P be any partition of [a, b] .let P be any partition of [a, b] then

- A) $L(P, -f, \alpha) = L(P, f, \alpha)$
- B) $U(P, -f, \alpha) = -U(P, f, \alpha)$
- C) $L(P, -f, \alpha) = -U(P, f, \alpha)$
- D) $L(P, -f, \alpha) = U(P, f, \alpha)$
- 30. Let I = [2,8] be closed and bounded interval in R. Let $P_1 = (2,5,7,8)$ and

 $P_2 = (2,4,6,7,8)$ then common refinement of P_1 and P_2 is

- A) (2,7,8)
- B) (2,4,6,7,8)
- C) (2,4,6,6,7,8)
- D) (2,5,7,8)
- 31. Let f be a bounded function and α be non decreasing function on [a, b] then
- A) $\int_{-a}^{b} f d\alpha = \int_{a}^{-b} f d\alpha$
- B) $\int_{-a}^{b} f d\alpha \le \int_{a}^{-b} f d\alpha$
- C) $\int_{-a}^{b} f d\alpha \ge \int_{a}^{-b} f d\alpha$
- D) $\int_{-a}^{b} f d\alpha = -\int_{a}^{-b} f d\alpha$
- 32 If f is continuous function on [a, b] then
- A) f is differentiable on [a, b]
- B) f is non-differentiable on [a, b]
- C) f is Reimann Steiljets integrable on [a, b]
- D) f is not Reimann Steiljets integrable on [a, b]
- 33 If P is refinement of Q then
 - A) $L(P, f, \alpha \le L(Q, f, \alpha)$
 - B) $U(P, f, \alpha) \le U(Q, f, \alpha)$
 - C) $L(Q, f, \alpha) \le L(P, f, \alpha)$

- D) $L(P, f, \alpha) \leq U(Q, f, \alpha)$
- 34 Let $f \in R(\alpha)$ then $\alpha(x)$ can be
 - A) $\frac{1}{x}$
 - B) $\frac{1}{1+x^2}$
 - C) x^2
 - D) None of the above
- 35 Let f and g two bounded functions defined on [a, b], p be any partition of [a, b] then
 - A) $L(P, f + g) \ge L(P, f) + L(P, g)$
 - B) $L(P, f + g) \le L(P, f) + L(P, g)$
 - C) L(P, f + g) = L(P, f) + l(P, g)
 - D) L(P, f + g) = 2[L(P, f) + l(P, g)]
- 36 Lower Riemann Stieltjes integral of f with respect to α over [a, b] is
 - A) $Sup\{L(P, f, \alpha)\}$
 - B) $Inf\{L(P, f, \alpha)\}$
 - C) $Inf\{U(P,f,\alpha)\}$
 - D) $Sup\{U(P, f, \alpha)\}$
- 37 Let $f_1 \in R(\alpha)$ and $f_2 \in R(\alpha)$ on [a, b] then $\int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha$ is
 - A) $\int_a^b f_1 + f_2 \, d\alpha$
 - B) $2\int_a^b f_1 + f_2 d\alpha$
 - C)) $\int_a^{\ddot{b}} f_1 f_2 d\alpha$
 - D) 0
- 38 Consider the function $f(x) = x^2 + 3$. Which of the following is correct
 - A) Riemann integrable on [0,2]
 - B) Riemann integrable on [0,1]
 - C) Riemann integrable on [0,5]
 - D) All are correct
- 39 Find the value of $\int_0^1 x d\alpha(x)$

 - A) $\frac{1}{2}$ B) $\frac{2}{3}$ C) $\frac{1}{2}$

 - D) $-\frac{1}{3}$
- 40 Lower Riemann Stieltjes integral of f with respect to α over [a, b] is
 - A) $Sup\{L(P, f, \alpha)\}$
 - B) $Inf\{L(P, f, \alpha)\}$
 - C) $Inf\{U(P,f,\alpha)\}$
 - D) $Sup\{U(P, f, \alpha)\}$
- 41 Which of the following is true

A)
$$\int_a^b f + g \, d\alpha \le \int_a^b f \, d\alpha + \int_a^b g \, d\alpha$$

B)
$$\int_{a}^{b} f + g \, d\alpha = \int_{a}^{b} f \, d\alpha + \int_{a}^{b} g \, d\alpha$$

C)
$$\int_{a}^{b} f + g \, d\alpha \ge \int_{a}^{b} f \, d\alpha + \int_{a}^{b} g \, d\alpha$$

D)
$$\int_a^b f + g \, d\alpha = \int_a^b f \, d\alpha$$

42 If $f_1(x) \le f_2(x)$ on [a, b] then

A)
$$\int_a^b f_1 d\alpha \le \int_a^b f_2 d\alpha$$

B)
$$\int_a^b f_1 d\alpha = \int_a^b f_2 d\alpha$$

C)
$$\int_a^b f_1 d\alpha \ge \int_a^b f_2 d\alpha$$

D)
$$\int_{a}^{b} f_1 d\alpha = -\int_{a}^{b} f_2 d\alpha$$

43 If $f \in R(\alpha)$ on [a, b] and c be any positive integer

A)
$$cf \in R(\alpha)$$
 and $f \notin R(c\alpha)$

B)
$$cf \in R(\alpha)$$
 and $f \in R(c\alpha)$

C)
$$cf \notin R(\alpha)$$
 and $f \notin R(c\alpha)$

D)
$$cf \notin R(\alpha)$$
 and $f \in R(c\alpha)$

44 Let f be a bounded function and α is nondecreasing function on [a, b] then

A)
$$\int_{-a}^{b} (-f) d\alpha = -\int_{-a}^{b} f d\alpha$$

B)
$$\int_{-a}^{b} (-f) d\alpha = -\int_{a}^{-b} f d\alpha$$

C)
$$\int_{-a}^{b} (-f) d\alpha = \int_{-a}^{b} f d\alpha$$

D)
$$\int_{-a}^{b} (-f) d\alpha = \int_{a}^{-b} f d\alpha$$

45 Let $\alpha(x) = x \ \forall x \in [a, b]$ be a monotonic increasing function, then $\sum_{i=1}^{n} \Delta \alpha_i$ is

A)
$$b - a$$

B)
$$a + b$$

C)
$$a - b$$

46 If $f \in R(\alpha)$ and if there is differentiable function F on [a,b] such that F' = f then $\int_a^b f(x) \, dx$ is

A)
$$F(b) + F(a)$$

B)
$$F(b) - F(a)$$

C)
$$F(a) - F(b)$$

47 Let
$$f(x) = 2$$
, $x \in [1,100]$ then $f(x)$ is

A) f(x) is Riemann integrable in [1,100]

- B) f(x) is not Riemann integrable in [1,100]
- C) f(x) may or may not be Riemann integrable in [1,100]
- D) None of the above
- 48 Let P' be a refinement of partition P, $U(P, f, \alpha) L(P, f, \alpha) < \epsilon$ for some $\epsilon > 0$ then
 - A) $U(P', f, \alpha) L(P', f, \alpha) > \epsilon$
 - B) $U(P', f, \alpha) L(P', f, \alpha) < \epsilon$
 - C) $U(P', f, \alpha) + L(P', f, \alpha) > \epsilon$
 - D) $U(P', f, \alpha) + L(P', f, \alpha) < \epsilon$
- 49 If f be bounded in [a,b] and c be a constant, then evaluate $\int_a^b f \, dc$
 - A) 0
 - B) 1
 - C) $\frac{1}{2}$
 - D) -1
- 50 Let f be a bounded function and α be non decreasing function on [a, b] then

Which of the following is true

- A) $m [\alpha(b) \alpha(a)] \le L(P, f, \alpha)$
- B) $M [\alpha(b) \alpha(a)] \le L(P, f, \alpha)$
- C) $m [\alpha(b) \alpha(a)] \le U(P, f, \alpha)$
- D) None of the above
- 51. Which one of the following statements are correct
 - A) pointwise convergence → uniform convergence
 - B) uniform convergence → pointwise convergence
 - C) uniform convergence → uniform continuity
 - D) All of the above
- 52. Suppose $\{f_n\}$ be a sequence of functions such that $|f_n(x)| \le M_n$, n = 1,2,... If $\sum M_n$ converges then
 - A) $\sum f_n$ converges
 - B) $\sum f_n$ converges uniformly
 - C) $\sum f_n$ diverges
 - D) $\sum f_n$ converges to a continuous and bounded function f
- 53. Suppose $\lim_{n\to\infty} f_n$ (x) = f(x) and $M_n = Sup|f_n(x) f(x)|$ Then
 - $(A) f_n \to f \text{ if } M_n \to \infty \text{ as } n \to 0$
 - (B) $f_n \to f$ uniformly if and only if $M_n \to 0$ as $n \to \infty$
 - (C) f_n diverges
 - (D) $f_n \to f$ if $M_n \to \infty$ as $n \to 0$

- 54. Let x be a limit point of a set E. $\{f_n\}$ be a sequence of functions defined on the set E. Then $\lim_{t\to x} \lim_{n\to\infty} f_n(t) = \lim_{n\to\infty} \lim_{t\to x} f_n(t) \text{ if }$
 - (A) $\{f_n\}$ and f are continuous on E
 - (B) $\{f_n\}$ converges to f on E
 - (C) $\{f_n\}$ converges uniformly on E
 - (D) $\{f_n\}$ converges to f on E and f is continuous on E
- 55. Which of the following statements are correct
 - (A) $\{f_n\}$ is a sequence of continuous functions, $f_n \to f$ uniformly then f is continuous
 - (B) $\{f_n\}$ is a sequence of continuous function and $f_n \to f$, where f is a continuous function. Then the convergence is uniform.
 - (C) $\{f_n\}$ converges to a continuous function f. Then the convergence is uniform.
 - (D) None of the above
- 56. Let a sequence of continuous functions $\{f_n\}$ converges pointwise to a continuous function f on a set K such that $f_n(x) \ge f_{n+1}(x) \ \forall \ x \in K$. Then the convergence is uniform if
 - (A) K is open
 - (B) K is closed
 - (C) K is compact
 - (D) K is bounded
- 57. Which one of the following statements are correct
 - (A) f is continuous $\rightarrow f$ is differentiable
 - (B) f is differentiable $\rightarrow f$ is continuous
 - (C) Both (A) and (B)
 - (D) Neither (A) nor (B)
- 58. Which one of the following sequence of functions converges uniformly

 - (A) $f_n(x) = \frac{1}{nx+1}$; $x \in (0,1)$ (B) $f_n(x) = \frac{1}{nx+1}$; $x \in [0,1]$
 - (C) $f_n(x) = \frac{1}{nx+1}$; $x \in (0,1]$
 - (D) All of the above
- 59. $\{f_n\}$ is a sequence of continuous functions, $f_n \to f$ uniformly then
 - (A) f is continuous
 - (B) *f* is differentiable
 - (C) f is bounded
 - (D) f is equicontinuous
- 60. A series of functions $\sum f_n$ converges uniformly to a function f on a set E if
 - (A) $\{f_n\}$ converges to f on E
 - (B) Sequence of partial sums converges uniformly on E
 - (C) Each f_n is continuous and $\{f_n\}$ converges to f on E
 - (D) None of the above
- 61. Consider the sequences of functions $\{f_n\} = \frac{1}{nx+1}$; $x \in (a,b)$. Then
 - (A) $\{f_n\}$ is sequence of continuous functions

- (B) $f_n \to 0$ monotonically
- (C) $\{f_n\}$ converges uniformly
- (D) Both (A) and (B)
- 62. Let $|f_n| \le M_n$; n = 1,2,3... Then the series $\{f_n\}$ converges uniformly if
 - (A) $\sum M_n \to 0$
 - (B) $\sum M_n \to 0$ uniformly
 - (C) $\sum M_n$ converges
 - (D) $\sum M_n$ converges uniformly
- 63. $\{f_n\}$ is sequence of continuous functions on a compact set K. $\{f_n\} \to f$ pointwise to a continuous function f on K and $f_{n+1}(x) \le f_n(x) \ \forall x \in K$. Let $g_n = f_n - f$. Then
 - (A) g_n is continuous
 - (B) $\{g_n\} \to 0$ pointwise
 - (C) $g_{n+1}(x) \le g_n(x) \ \forall x \in K$
 - (D) All of the above
- 64. Let $\mathcal{C}(x)$ be the set of all complex valued, continuous, bounded functions on X. Then the supremum norm is defined as

 - $(A) ||f|| = \sup_{x \in X} |f(x)|$ $(B) ||f|| = \sup_{x \in X} f(x)$ $(C) ||f|| = \sup_{x \in X} f'(x)$ (E) None of the above

 - 65. Let $\mathcal{C}(x)$ be the set of all complex valued, continuous, bounded functions on X. Define ||f|| = $\sup |f(x)|$. Which one of the following is correct $x \in \hat{X}$
 - $(A)||f|| < \infty$
 - (B) ||f|| = 0 if and only if $f(x) = 0 \ \forall x \in X$
 - (C) $||f + g|| \le ||f|| + ||g||$
 - (D) All of the above
- 66. Let X be a compact metric space and let $\mathcal{C}(x)$ be the set of all complex valued, continuous, bounded functions on X. Define $||f|| = \sup |f(x)|$. Then
 - (A) C(x) is closed
 - (B) C(x) is compact
 - (C) C(x) is complete metric space
 - (D) None of the above
 - 67. Let $\mathcal{C}(x)$ be the set of all complex valued, continuous, bounded functions on X. Define ||f|| = $\sup |f(x)|$. A sequence of functions $\{f_n\}$ converges to f with respect to a metric of $\mathcal{C}(x)$ if and $x \in X$ only if
 - $(A)\{f_n\} \to f \text{ on } X$
 - (B) $\{f_n\} \to f$ on X and f is continuous
 - (C) $\{f_n\} \to f$ on X and f is bounded
 - $(D)\{f_n\} \to f$ uniformly on X
 - 68. Let $f_n \in \mathcal{R}(\alpha)$ on [a, b] and $\{f_n\} \to f$ uniformly on [a, b]. Then $f \in \mathcal{R}(\alpha)$ if

- (A) If f is continuous on [a, b]
- (B) If f is differentiable on [a, b]
- (C) If f is monotonic on [a, b]
- (D) If α is monotonically increasing on [a, b]
- 69. Let $f_n \in \mathcal{R}(\alpha)$ on [a, b] and let $\sum f_n(x) = f(x)$; $x \in [a, b]$. Then $\int_a^b f(x) d\alpha = \int_a^b f(x) dx$ $\sum_{n=0}^{\infty} \int_{a}^{b} f_{n}(x) d\alpha$ if
 - (A) fn converges
 - (B) fn converges uniformly
 - (C) $\sum f_n$ converges to a bounded function
 - (D) None of the above
- 70. Let α is monotonically increasing on [a, b]. Suppose $f_n \in \mathcal{R}(\alpha)$ on [a, b]; n = 1, 2, 3, ... and $\{f_n\} \to f$ uniformly on [a, b]. Then
 - A) $f \in \mathcal{R}(\alpha)$
 - B) f is bounded
 - C) f is continuous
 - D) f is monotonically increasing
- 71. Which one of the following statements are correct
 - A. Uniform convergence of $\{f_n\}$ implies uniform convergence of $\{f_n'\}$
 - $B. f_n \in \mathcal{R}(\alpha)$ on [a, b]; n = 1, 2, 3, ... and $\{f_n\} \to f$ uniformly on [a, b] implies $f \in \mathcal{R}(\alpha)$
 - C. Pointwise converges of a sequence implies uniform convergence of that sequence
 - D.None of the above
- 72. If $\{f_n\}$ and $\{g_n\}$ converge uniformly on E. Then
 - A. $\{f_n + g_n\}$ converge uniformly on E
 - $B.\{f_n g_n\}$ converge uniformly on E
 - C. Both (A) and (B)
 - D. Neither (A) or (B)
- 73. If $\{f_n\}$ and $\{g_n\}$ converge uniformly on E. Then $\{f_n g_n\}$ converge uniformly on E if
 - A. $\{f_n\}$ and $\{g_n\}$ are continuous
 - B. $\{f_n\}$ and $\{g_n\}$ are differentiable
 - C. $\{f_n\}$ and $\{g_n\}$ are bounded functions
 - D. $\{f_n\}$ and $\{g_n\}$ are monotonic functions
- 74. Which one of the following sequences are uniformly convergent
 - A. $f_n(x) = \frac{1}{nx+1}$; $x \in [0,1]$ B. $f_n(x) = \frac{x}{nx^2+1}$; $x \in [0,1]$

 - C. Both (A) and (B)
 - D. Neither (A) nor (B)
- 75. Which of the following statements are false
 - A. There exists real continuous function on the real line which is differentiable
 - B. There exists no real continuous function on the real line which is nowhere differentiable
 - C. There exists real continuous function on the real line which is integrable
 - D. All of these

- 76. A sequence of functions $\{f_n\}$ is said to be pointwise bounded on E if
 - A. The sequence $\{f_n(x)\}$ is bounded for some $x \in E$
 - B. The sequence $\{f_n(x)\}$ is convergent for every $x \in E$
 - C. The sequence $\{f_n(x)\}$ is bounded for every $x \in E$
 - D. The sequence $\{f_n(x)\}$ is convergent for some $x \in E$
- 77. Let $\{f_n\}$ be a pointwise bounded sequence of complex functions on a set E. Then $\{f_n\}$ has a convergent subsequence in E if
 - A. E is compact
 - B. E is countable
 - C. E is closed
 - D. E is bounded
- 78. A family *F* of complex functions *f* defined on a set *E* in a metric space *X* is said to be equicontinuous on *E* if
 - A. for every $\varepsilon > 0$, there exists a $\delta > 0$ such that $|f(x) g(y)| < \varepsilon$ whenever $d(x,y) < \delta$, $x,y \in E$
 - B. Each function in F is continuous on E
 - C. Each function in F is uniformly continuous on E
 - D. for every $\varepsilon > 0$, there exists a $\delta > 0$ such that $|f(x) f(y)| < \varepsilon$ whenever $d(x, y) < \delta$, $x, y \in E$ and $f \in F$
- 79. Let $\{f_n\}$ be a sequence of functions defined on a set E. If there exists a number M such that $|f_n(x)| < M$ for all $x \in E$, then we say that $\{f_n\}$ is
 - A. Uniformly bounded on E
 - B. Uniformly continuous on E
 - C. Convergent on *E*
 - D. Uniformly convergent on E
- 80. The Stone Weierstrass Theorem states that
 - A. If f is a complex function on [a, b], then \exists a sequence of polynomials P_n such that $\lim_{n\to\infty} P_n(x) = f(x)$ uniformly on [a, b].
 - B. If f is a continuous complex function on [a, b], then \exists a sequence of polynomials P_n such that $P_n(x)$ converges to f(x) pointwise on [a, b].
 - C. If f is a continuous complex function on [a, b], then \exists a sequence of polynomials P_n such that $\lim_{n \to \infty} P_n(x) = f(x)$ uniformly on [a, b].
 - D. If f is a complex function on [a, b], then \exists a sequence of polynomials P_n such that $P_n(x)$ converges to f(x) pointwise on [a, b].
- 81. f is said to be expanded in a power series about the point x = a if
 - A. $f(x) = \sum_{n=0}^{\infty} c_n (x+a)^n$ converges for |x-a| < R, for some R > 0.
 - B. $f(x) = \sum_{n=0}^{\infty} ax^n$ converges for all $x \in (-R, R)$, for some R > 0.
 - C. $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ converges for all $x \in (-R, R)$, for some R > 0
 - D. $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ converges for |x-a| < R, for some R > 0
- 82. Suppose the series $\sum_{n=0}^{\infty} c_n x^n$ converges for |x| < R and define $f(x) = \sum_{n=0}^{\infty} c_n x^n$ for |x| < R. Then
 - A. f is continuous but not differentiable in (-R, R)
 - B. f is not continuous and differentiable in (-R, R)

- C. f is differentiable and $f'(x) = \sum_{n=1}^{\infty} nc_n x^{n-1}$ for |x| < R
- D. $\sum_{n=0}^{\infty} c_n x^n$ converges uniformly on [-R, R]
- 83. Suppose $\sum_{n=0}^{\infty} c_n$ converges and put $f(x) = \sum_{n=0}^{\infty} c_n x^n$ where -1 < x < 1. Then what will be the limit $\lim_{x \to 1} f(x)$?
 - A. $\sum_{n=0}^{\infty} c_n$
 - B. -1
 - C. 1
 - D. Does not exist
- 84. Suppose the series $\sum a_n x^n$ and $\sum b_n x^n$ converge in the segment S = (-R, R). Let E be the set of all $x \in S$ at which $\sum a_n x^n = \sum b_n x^n$. Then what is the condition for satisfying $\sum a_n x^n = \sum b_n x^n$ for all $x \in S$?
 - A. *E* is bounded
 - B. E has a limit point in S
 - C. E is a finite set
 - D. $E = \emptyset$
- 85. The series $E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ converges
 - A. For every complex number z
 - B. Only for those complex number z whose real part is greater than or equal to 0
 - C. Only at z = 0
 - D. Only for those complex number z whose imaginary part is greater than or equal to 0
- 86. If we define $E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$, then which of the following is true?
 - A. E(Z + W) = E(Z) + E(W)
 - B. $E(Z + W) \le E(Z) + E(W)$
 - C. E(Z + W) = E(Z).E(W)
 - D. $E(Z + W) \ge E(Z) + E(W)$
- 87. What is the product E(z). E(-z) where $E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$
 - A. 0
 - B. 1
 - C. ∞
 - D. -1
 - E.
- 88. If we define $E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$, which of the following is true?
 - A. E(z) = 0 for some z
 - B. E(x) < 0 for all real x
 - C. E(x) < 0 if x > 0
 - D. $E(z) \neq 0$ for all z
- 89. Which of the following is not a property of E(z) where $E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$
 - A. $E(x) \rightarrow 0$ as $x \rightarrow -\infty$ along the real axis
 - B. E is strictly decreasing on the whole real axis
 - C. E is strictly increasing on the whole real axis

- D. $E(x) \to +\infty$ as $x \to +\infty$ along the real axis
- 90. For every *n*, what is the limit $\lim_{x\to +\infty} x^n e^{-x}$?
 - A. +∞
 - B. −∞
 - C. 0
 - D. 1
- 91. What is mean by the algebraic completeness of the Complex Field?
 - A. Every non constant polynomial with complex coefficients has a complex root.
 - B. Every non constant polynomial with complex coefficients has exactly one complex root.
 - C. Every polynomial with complex coefficients has atmost one complex root.
 - D. Every non constant polynomial has no any complex root.
- 92. If $C(x) = \frac{1}{2}[E(ix) + E(-ix)]$, then which of the following is true?
 - A. C(0) = 0
 - B. $C(x) \neq 0 \forall x$
 - C. There exist positive integers x such that C(x) = 0
 - D. C'(x) = S(x) where $S(x) = \frac{1}{2i} [E(ix) E(-ix)]$
- 93. The function E is periodic with period
 - Α. 2π
 - Β. 2πί
 - C. πi
 - D. π
- 94. The functions C and S are periodic with period
 - Α. 2πί
 - Β. π
 - C. πi
 - D. 2π
- 95. If there is a unique t in $[0, 2\pi)$ such that E(it) = z, then
 - A. |z| < 1
 - B. |z| > 1
 - C. |z| = 1
 - D. z = 0
- 96. Every power series is
 - A. Convergent
 - B. Divergent
 - C. Uniformly Convergent
 - D. Nowhere Convergent
- 97. If $S(x) = \frac{1}{2!} [E(ix) E(-ix)]$, then
 - A. $\overline{S(x)} = S(x)$
 - B. S(0) = 0

C.
$$S'(x) = C(x)$$
, where $C(x) = \frac{1}{2} [E(ix) - E(-ix)]$

D.
$$S\left(\frac{\pi}{2}\right) = 1$$

98. Suppose the series $\sum_{n=0}^{\infty} c_n x^n$ converges for |x| < R and define f(x) = $\sum_{n=0}^{\infty} c_n x^n$, |x| < R. Then $\sum_{n=0}^{\infty} c_n x^n$ converges uniformly on $[-R + \varepsilon, R - \varepsilon]$ no matter which $\varepsilon > 0$ is chosen. The function f is continuous and differentiable in

A.
$$(-R + \varepsilon, R - \varepsilon)$$

B.
$$[-R + \varepsilon, R - \varepsilon]$$

C.
$$[-R, R]$$

D.
$$(-R,R)$$

99. Let $f_n(x) = \frac{x^2}{x^2 + (1 - nx)^2}$, $0 \le x \le 1$, $n = 1, 2, 3 \dots$. Then which statement is true.

A.
$$\lim_{n\to\infty} f_n(x) = 0$$

B. $\{f_n\}$ is uniformly bounded on [0,1]

C.
$$f_n\left(\frac{1}{n}\right) = 1$$

- D. Subsequence converges uniformly on [0,1]
- 100. When we say that f is expanded on a power series about the point x = a

A. If
$$f(x) = \sum_{n=0}^{\infty} c_n x^n$$
 converges $\forall x \in (-R, R)$

B. If
$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$
 converges for $|x-a| < R$
C. If $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ converges for $|x-a| > R$
D. If $f(x) = \sum_{n=0}^{\infty} c_n x^n$ diverges $\forall x \in (-R, R)$

C. If
$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$
 converges for $|x-a| > F$

D. If
$$f(x) = \sum_{n=0}^{\infty} c_n x^n$$
 diverges $\forall x \in (-R, R)$