Real Analysis- First Semester

- 1. Which of the following functions is monotonically decreasing when x > 0?
 - A. 2x + 3
 - ^{B.} e^x
 - C. <u>1</u>
 - $\frac{x}{x}$
 - D. logx

2. Which of the following functions is monotonically increasing in the interval $(-\infty, \infty)$?

- A. x^{3} B. $\frac{1}{x}$ C. sinx D. |x|
- 3. Strictly increasing function is defined as
 - A. If $x_1 < x_2$ then $f(x_1) = f(x_2)$
 - B. If $x_1 < x_2$ then $f(x_1) < f(x_2)$
 - C. If $x_1 < x_2$ then $f(x_1) > f(x_2)$
 - D. None of the above
- 4. Strictly decreasing function is defined as
 - A. If $x_1 < x_2$ then $f(x_1) = f(x_2)$
 - B. If $x_1 < x_2$ then $f(x_1) < f(x_2)$
 - C. If $x_1 < x_2$ then $f(x_1) > f(x_2)$
 - D. None of the above
- 5. Let f be a real valued function defined on [a, b] and $c \in (a, b)$ then c is called a jump of discontinuity of f if

A.
$$f(c +) - f(c -) > 0$$

B. $f(c +) - f(c -) = 0$
C. $f(c) - f(c -) = 0$

- D. f(c +) f(c) = 0
- 6. Find the point of discontinuity of the function $f(x) = \frac{1}{x^{-2}}$.
 - A. -2
 - B. 0
 - C. 2
 - D. 1
- 7. Which of the following is not a partition of [0,1].
 - A. {0, 0.2, 0.4, 0.6, 0.8}
 - B. {0, 0.3, 06, 0.7, 1}
 - C. {0, 0.3, 0.6, 0.9, 1}
 - D. {0,0.5,1})
- 8. Find the length of the second subinterval of the partition {1, 1.3, 1.5, 1.9, 2}.
 - A. 0.1
 - B. 0.2
 - C. 0.3
 - D. 0.4
- 9. Which of the following functions are bounded?
 - A. *x*
 - B. $\frac{1}{x}$

C. $\frac{1}{1+x^{2}}$

D. tanx

- 10. Assume that f and g are each of bounded variation on [a, b]. Which of the following function need not be of bounded variation?
 - A. f + g
 - B. f g
 - C. f * g
 - D. $f \div g$

11. If f is monotonic function on [a, b]

- A. f is bounded variation
- B. f is unbounded
- C. The set of discontinuities of f are uncountable
- D. None of the above
- 12. A function of bounded variation is
 - A. Necessarily bounded
 - B. Necessarily unbounded
 - C. May be bounded or unbounded
 - D. None of the above
- 13. f is of bounded variation on [a, b] if and only if
 - A. f is the difference of two increasing real valued functions on [a, b]
 - B. f is the product of two increasing real valued functions on [a, b]
 - C. f is the quotient of two increasing real valued functions on [a, b]
 - D. None of the above

14. If f is bounded variation on [a, b] Then total variation on [a, b] is

- A. Non negative finite number
- B. Non positive finite number
- C. Extended real number
- D. None of the above
- 15. The total variation of f on [a, b] is 0 then
 - A. f is continuous
 - B. f is constant
 - C. f is monotonic
 - D. None of the above
- 16. Assume that f and g are each of bounded variation on [a, b]. Then
 - A. $v_{f+g} = v_f + v_g$
 - B. $v_{f+g} \le v_f + v_g$
 - C. $v_{f+g} \ge v_f + v_g$
 - D. None of the above
- 17. Assume that f and g are each of bounded variation on [a, b]. Then
 - A. $v_{f-g} = v_f + v_g$
 - B. $v_{f-g} \leq v_f + v_g$
 - C. $v_{f-g} \ge v_f + v_g$
 - D. None of the above
- 18. Assume that f and g are each of bounded variation on [a, b]. Then
 - A. $v_{f,g} = A \cdot v_f + B \cdot v_g$
 - B. $v_{f.g} \leq A.v_f + B.v_g$
 - C. $v_{f,g} \ge A.v_f + B.v_g$
 - D. None of the above
- 19. If *f* is bounded variation on [a, b] and $c \in (a, b)$, Then

- A. $v_f(a,b) \le v_f(a,c) + v_f(c,b)$
- B. $v_f(a,b) \ge v_f(a,c) + v_f(c,b)$
- C. $v_f(a, b) = v_f(a, c) + v_f(c, b)$
- D. None of the above

20. Which of the following function trace out the unit circle $x^2 + y^2 = 1$

- A. $e^{-2\pi i}$
- B. $sin\pi z$
- C. *cosπz*
- D. $tan\pi z$
- 21. The length of any inscribed polygon is ------ that of the curve.
 - A. Greater than or equal to
 - B. Less than or equal to
 - C. Strictly Greater than
 - D. Equal to

22. Let $\vec{f}: [a, b] \to \mathbb{R}^n$ be a path in \mathbb{R}^n . Then its arc length

A.
$$\Lambda_{\overrightarrow{f}}(a,b) = Sup\{\Lambda_{\overrightarrow{f}}(P): P \in \mathcal{P}[a,b]\}$$

B. $\Lambda_{\overrightarrow{f}}(a,b) = Inf\{\Lambda_{\overrightarrow{f}}(P): P \in \mathcal{P}[a,b]\}$

- C. $\Lambda_{\overrightarrow{f}}(a,b) = Min\left\{\Lambda_{\overrightarrow{f}}(P): P \in \mathcal{P}[a,b]\right\}$
- D. None of the above

23. Let $\vec{f}: [a, b] \to \mathbb{R}^n$ be a path in \mathbb{R}^n with components $\vec{f} = (f_1, f_2, \dots, f_n)$. Then A. $\Lambda_{\vec{f}}(a, b) \le v_1(a, b) + v_2(a, b) + \dots + v_n(a, b)$

- B. $\Lambda_{\vec{t}}(a,b) \ge v_1(a,b) + v_2(a,b) + \dots + v_n(a,b)$
- C. $\Lambda_{\vec{t}}(a,b) = v_1(a,b) + v_2(a,b) + \dots + v_n(a,b)$
- D. None of the above
- 24. Let $\vec{f} = (f_1, f_2, ..., f_n)$ be a rectifiable path defined on [a, b] and $c \in (a, b)$. Then A. $\Lambda_{\vec{f}}(a, b) \leq \Lambda_{\vec{f}}(a, c) + \Lambda_{\vec{f}}(c, b)$
 - B. $\Lambda_{\overrightarrow{f}}(a,b) \ge \Lambda_{\overrightarrow{f}}(a,c) + \Lambda_{\overrightarrow{f}}(c,b)$
 - C. $\Lambda_{\overrightarrow{f}}(a,b) = \Lambda_{\overrightarrow{f}}(a,c) + \Lambda_{\overrightarrow{f}}(c,b)$
 - D. None of the above
- 25. Let $\vec{f}: [a, b] \to \mathbb{R}^n$ and $\vec{g}: [c, d] \to \mathbb{R}^n$ be two paths in \mathbb{R}^n , each of which is one to one on its domain. Let $u: [c, d] \to [a, b]$ be the real valued function satisfying $\vec{x}(t) = \vec{f}(u(t))$. Then
 - $\vec{g}(t) = \vec{f}(u(t))$. Then
 - A. u is continuous and strictly monotonic
 - B. *u* is continuous and monotonic
 - C. *u* is monotonic
 - D. None of the above
- 26. Let I = [3,12] be a closed and bounded interval in R. let $P_1 = (3,5,9,12)$ and

 $P_2 = (3,4,5,7,9,11,12)$, $P_3 = (3,9,12)$ be any three partitions of *I* then

- A) P_2 is a refinement of P_1 and P_3 is a refinement of P_1
- B) P_1 is a refinement of P_2 and P_2 is a refinement of P_3
- C) P_2 is a refinement of P_3 and P_1 is a refinement of P_3
- D) P_2 is a refinement of P_1 and P_1 is a refinement of P_3
- 27. Upper Riemann Stieltjes integral of f with respect to α over [a, b] is
 - A) Sup { $L(P, f, \alpha)$ }

B) Inf {L(P, f, α) }
C) Inf {U(P, f, α) }
D) Sup {U(P, f, α) }

28. Let I = [1,13] be closed and bounded interval in *R*. Let P = (1,2,5,9,12,13) be any

partition of *I*, then ||P|| is

A) 3
B) 4
C) 2
D) 1

29. Let f(x) be a bounded real valued function defined on [a, b] and $\alpha(x)$ is monotonically

increasing on [a, b].Let P be any partition of [a, b].let P be any partition of [a, b] then

A) $L(P, -f, \alpha) = L(P, f, \alpha)$ B) $U(P, -f, \alpha) = -U(P, f, \alpha)$ C) $L(P, -f, \alpha) = -U(P, f, \alpha)$ D) $L(P, -f, \alpha) = U(P, f, \alpha)$

30. Let I = [2,8] be closed and bounded interval in R. Let $P_1 = (2,5,7,8)$ and

 $P_2 = (2,4,6,7,8)$ then common refinement of P_1 and P_2 is

A) (2,7,8)
B) (2,4,6,7,8)
C) (2,4,6,6,7,8)
D) (2,5,7,8)

31. Let f be a bounded function and α be non decreasing function on [a, b] then

A)
$$\int_{-a}^{b} f d\alpha = \int_{a}^{-b} f d\alpha$$

B)
$$\int_{-a}^{b} f d\alpha \leq \int_{a}^{-b} f d\alpha$$

C)
$$\int_{-a}^{b} f d\alpha \geq \int_{a}^{-b} f d\alpha$$

D)
$$\int_{-a}^{b} f d\alpha = -\int_{a}^{-b} f d\alpha$$

32 If f is continuous function on [a, b] then

- A) f is differentiable on [a, b]
- B) f is non-differentiable on [a, b]
- C) f is Reimann Steiljets integrable on [a, b]
- D) f is not Reimann Steiljets integrable on [a, b]

33 If P is refinement of Q then

- A) $L(P, f, \alpha \leq L(Q, f, \alpha)$
- B) $U(P, f, \alpha) \leq U(Q, f, \alpha)$
- C) $L(Q, f, \alpha) \leq L(P, f, \alpha)$

D) $L(P, f, \alpha) \leq U(Q, f, \alpha)$ 34 Let f $\epsilon R(\alpha)$ then $\alpha(x)$ can be A) $\frac{1}{x}$ B) $\frac{1}{1+x^2}$ C) x^2 D) None of the above 35 Let f and g two bounded functions defined on [a, b], p be any partition of [a, b] then A) $L(P, f + g) \ge L(P, f) + L(P, g)$ B) $L(P, f + g) \leq L(P, f) + L(P, g)$ C) L(P, f + g) = L(P, f) + l(P, g)D) L(P, f + g) = 2[L(P, f) + l(P, g)]36 Lower Riemann Stieltjes integral of f with respect to α over $[\alpha, b]$ is A) $Sup\{L(P, f, \alpha)\}$ B) $Inf\{L(P, f, \alpha)\}$ C) $Inf\{U(P, f, \alpha)\}$ D) $Sup\{U(P, f, \alpha)\}$ 37 Let $f_1 \in R(\alpha)$ and $f_2 \in R(\alpha)$ on $[\alpha, b]$ then $\int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha$ is A) $\int_a^b f_1 + f_2 \, d\alpha$ B) $2 \int_{a}^{b} f_{1} + f_{2} d\alpha$ C)) $\int_{a}^{\tilde{b}} f_{1}f_{2} d\alpha$

D) 0

38 Consider the function $f(x) = x^2 + 3$. Which of the following is correct

- A) Riemann integrable on [0,2]
- B) Riemann integrable on [0,1]
- C) Riemann integrable on [0,5]
- D) All are correct

39 Find the value of $\int_0^1 x d\alpha(x)$

A)
$$\frac{1}{2}$$

B) $\frac{2}{3}$
C) $\frac{1}{2}$
D) $-\frac{1}{2}$

40 Lower Riemann Stieltjes integral of f with respect to α over [a, b] is

- A) $Sup\{L(P, f, \alpha)\}$
- B) $Inf\{L(P,f,\alpha)\}$
- C) $Inf\{U(P,f,\alpha)\}$
- D) $Sup\{U(P, f, \alpha)\}$
- 41 Which of the following is true

A)
$$\int_{a}^{b} f + g \, d\alpha \leq \int_{a}^{b} f \, d\alpha + \int_{a}^{b} g \, d\alpha$$

B)
$$\int_{a}^{b} f + g \, d\alpha = \int_{a}^{b} f \, d\alpha + \int_{a}^{b} g \, d\alpha$$

C)
$$\int_{a}^{b} f + g \, d\alpha \geq \int_{a}^{b} f \, d\alpha + \int_{a}^{b} g \, d\alpha$$

D)
$$\int_{a}^{b} f + g \, d\alpha = \int_{a}^{b} f \, d\alpha$$

42 If $f_1(x) \le f_2(x)$ on [a, b] then

A)
$$\int_{a}^{b} f_{1} d\alpha \leq \int_{a}^{b} f_{2} d\alpha$$

B)
$$\int_{a}^{b} f_{1} d\alpha = \int_{a}^{b} f_{2} d\alpha$$

C)
$$\int_{a}^{b} f_{1} d\alpha \geq \int_{a}^{b} f_{2} d\alpha$$

D)
$$\int_{a}^{b} f_{1} d\alpha = -\int_{a}^{b} f_{2} d\alpha$$

43 If $f \in R(\alpha)$ on [a, b] and *c* be any positive integer

A) $cf \in R(\alpha)$ and $f \notin R(c\alpha)$ B) $cf \in R(\alpha)$ and $f \in R(c\alpha)$ C) $cf \notin R(\alpha)$ and $f \notin R(c\alpha)$ D) $cf \notin R(\alpha)$ and $f \in R(c\alpha)$

44 Let f be a bounded function and α is nondecreasing function on [a, b] then

A)
$$\int_{-a}^{b} (-f) d\alpha = -\int_{-a}^{b} f d\alpha$$

B)
$$\int_{-a}^{b} (-f) d\alpha = -\int_{a}^{-b} f d\alpha$$

C)
$$\int_{-a}^{b} (-f) d\alpha = \int_{-a}^{b} f d\alpha$$

D)
$$\int_{-a}^{b} (-f) d\alpha = \int_{a}^{-b} f d\alpha$$

45 Let $\alpha(x) = x \ \forall x \in [a, b]$ be a monotonic increasing function, then $\sum_{i=1}^{n} \Delta \alpha_i$ is

A) b - a
B) a + b
C) a - b
D) 0

46 If $f \in R(\alpha)$ and if there is differentiable function F on [a, b] such that F' = f then $\int_{a}^{b} f(x) dx$ is

A) F(b) + F(a)B) F(b) - F(a)C) F(a) - F(b)D) 0

47 Let f(x) = 2, $x \in [1,100]$ then f(x) is

A) f(x) is Riemann integrable in [1,100]

- B) f(x) is not Riemann integrable in [1,100]
- C) f(x) may or may not be Riemann integrable in [1,100]
- D) None of the above

48 Let P' be a refinement of partition P, $U(P, f, \alpha) - L(P, f, \alpha) < \epsilon$ for some $\epsilon > 0$ then

A) $U(P', f, \alpha) - L(P', f, \alpha) > \epsilon$ B) $U(P', f, \alpha) - L(P', f, \alpha) < \epsilon$ C) $U(P', f, \alpha) + L(P', f, \alpha) > \epsilon$ D) $U(P', f, \alpha) + L(P', f, \alpha) < \epsilon$

49 If f be bounded in [a,b] and c be a constant, then evaluate $\int_a^b f dc$

A) 0
 B) 1
 a) 1

- C) $\frac{1}{2}$
- D) -1

50 Let f be a bounded function and α be non decreasing function on [a, b] then

Which of the following is true

- A) $m[\alpha(b) \alpha(a)] \leq L(P, f, \alpha)$
- B) $M[\alpha(b) \alpha(a)] \le L(P, f, \alpha)$
- C) $m[\alpha(b) \alpha(a)] \le U(P, f, \alpha)$
- D) None of the above

51. Which one of the following statements are correct

- A) pointwise convergence \rightarrow uniform convergence
- B) uniform convergence \rightarrow pointwise convergence
- C) uniform convergence \rightarrow uniform continuity
- D) All of the above

52. Suppose $\{f_n\}$ be a sequence of functions such that $|f_n(x)| \le M_n$, n = 1, 2, ... If $\sum M_n$ converges then

- A) $\sum f_n$ converges
- B) $\sum f_n$ converges uniformly
- C) $\sum f_n$ diverges

D) $\sum f_n$ converges to a continuous and bounded function f

53. Suppose $\lim_{n \to \infty} f_n$ (x) = f(x) and $M_n = Sup|f_n(x) - f(x)|$ Then

(A) $f_n \to f$ if $M_n \to \infty$ as $n \to 0$ (B) $f_n \to f$ uniformly if and only if $M_n \to 0$ as $n \to \infty$ (C) f_n diverges (D) $f_n \to f$ if $M_n \to \infty$ as $n \to 0$

- 54. Let x be a limit point of a set E. $\{f_n\}$ be a sequence of functions defined on the set E. Then $\lim_{t \to x} \lim_{n \to \infty} f_n(t) = \lim_{n \to \infty} \lim_{t \to x} f_n(t)$ if
 - (A) {f_n} and f are continuous on E
 (B) {f_n} converges to f on E
 (C) {f_n} converges uniformly on E
 (D) {f_n} converges to f on E and f is continuous on E
- 55. Which of the following statements are correct
 - (A) $\{f_n\}$ is a sequence of continuous functions, $f_n \to f$ uniformly then f is continuous
 - (B) $\{f_n\}$ is a sequence of continuous function and $f_n \to f$, where f is a continuous function. Then the convergence is uniform.
 - (C) $\{f_n\}$ converges to a continuous function f. Then the convergence is uniform.
 - (D) None of the above
- 56. Let a sequence of continuous functions $\{f_n\}$ converges pointwise to a continuous function f on a set K such that $f_n(x) \ge f_{n+1}(x) \forall x \in K$. Then the convergence is uniform if
 - (A) *K* is open(B) *K* is closed(C) *K* is compact(D) *K* is bounded
- 57. Which one of the following statements are correct
 - (A) f is continuous $\rightarrow f$ is differentiable (B) f is differentiable $\rightarrow f$ is continuous (C) Both (A) and (B) (D) Neither (A) nor (B)

58. Which one of the following sequence of functions converges uniformly

(A)
$$f_n(x) = \frac{1}{nx+1}$$
; $x \in (0,1)$
(B) $f_n(x) = \frac{1}{nx+1}$; $x \in [0,1]$
(C) $f_n(x) = \frac{1}{nx+1}$; $x \in (0,1]$
(D) All of the above

59. $\{f_n\}$ is a sequence of continuous functions, $f_n \to f$ uniformly then

(A) f is continuous
(B) f is differentiable
(C) f is bounded
(D) f is equicontinuous

60. A series of functions $\sum f_n$ converges uniformly to a function f on a set E if

- (A) $\{f_n\}$ converges to f on E
- (B) Sequence of partial sums converges uniformly on E
- (C) Each f_n is continuous and $\{f_n\}$ converges to f on E
- (D) None of the above

61. Consider the sequences of functions $\{f_n\} = \frac{1}{nx+1}$; $x \in (a, b)$. Then

(A) $\{f_n\}$ is sequence of continuous functions

- (B) $f_n \rightarrow 0$ monotonically
- (C) $\{f_n\}$ converges uniformly
- (D) Both (A) and (B)

62. Let $|f_n| \leq M_n$; n = 1,2,3... Then the series $\{f_n\}$ converges uniformly if

- (A) $\sum M_n \to 0$ (B) $\sum M_n \to 0$ uniformly (C) $\sum M_n$ converges
- (D) $\sum M_n$ converges uniformly
- 63. $\{f_n\}$ is sequence of continuous functions on a compact set K. $\{f_n\} \to f$ pointwise to a continuous function f on K and $f_{n+1}(x) \le f_n(x) \ \forall x \in K$. Let $g_n = f_n f$. Then
 - (A) g_n is continuous (B) $\{g_n\} \to 0$ pointwise (C) $g_{n+1}(x) \le g_n(x) \quad \forall x \in K$ (D) All of the above
- 64. Let $\mathcal{C}(x)$ be the set of all complex valued, continuous, bounded functions on X. Then the

supremum norm is defined as

(A)
$$||f|| = \sup_{x \in X} |f(x)|$$

(B) $||f|| = \sup_{x \in X} f(x)$
(C) $||f|| = \sup_{x \in X} f'(x)$
(E) None of the above

- 65. Let C(x) be the set of all complex valued, continuous, bounded functions on *X*. Define $||f|| = \sup_{x \in X} |f(x)|$. Which one of the following is correct
 - $\begin{aligned} (A) \left| |f| \right| &< \infty \\ (B) \left| |f| \right| &= 0 \text{ if and only if } f(x) = 0 \ \forall x \in X \\ (C) \left| |f + g| \right| &\leq \left| |f| \right| + \left| |g| \right| \\ (D) \text{ All of the above} \end{aligned}$
- 66. Let X be a compact metric space and let C(x) be the set of all complex valued, continuous, bounded functions on X. Define $||f|| = \sup |f(x)|$. Then
 - (A) C(x) is closed
 - (B) $\mathcal{C}(x)$ is compact
 - (C) C(x) is complete metric space
 - (D) None of the above
 - 67. Let C(x) be the set of all complex valued, continuous, bounded functions on X. Define $||f|| = \sup_{x \in X} |f(x)|$. A sequence of functions $\{f_n\}$ converges to f with respect to a metric of C(x) if and only if
 - $(A){f_n} \rightarrow f \text{ on } X$
 - (B) $\{f_n\} \to f$ on X and f is continuous
 - (C) $\{f_n\} \to f$ on X and f is bounded
 - $(D){f_n} \rightarrow f$ uniformly on *X*
 - 68. Let $f_n \in \mathcal{R}(\alpha)$ on [a, b] and $\{f_n\} \to f$ uniformly on [a, b]. Then $f \in \mathcal{R}(\alpha)$ if

(A) If f is continuous on [a, b](B) If f is differentiable on [a, b](C) If f is monotonic on [a, b](D) If α is monotonically increasing on [a, b]

69. Let $f_n \in \mathcal{R}(\alpha)$ on [a, b] and let $\sum f_n(x) = f(x)$; $x \in [a, b]$. Then $\int_a^b f(x) d\alpha =$

- $\sum_{n=0}^{\infty}\int_{a}^{b}f_{n}(x)d\alpha$ if
- (A) fn converges
- (B) fn converges uniformly
- (C) $\sum f_n$ converges to a bounded function
- (D) None of the above
- 70. Let α is monotonically increasing on [a, b]. Suppose $f_n \in \mathcal{R}(\alpha)$ on [a, b]; n = 1, 2, 3, ... and $\{f_n\} \rightarrow f$ uniformly on [a, b]. Then
 - A) $f \in \mathcal{R}(\alpha)$
 - B) f is bounded
 - C) f is continuous
 - D) f is monotonically increasing
- 71. Which one of the following statements are correct

A. Uniform convergence of $\{f_n\}$ implies uniform convergence of $\{f_n'\}$ $B. f_n \in \mathcal{R}(\alpha)$ on [a, b]; n = 1, 2, 3, ... and $\{f_n\} \to f$ uniformly on [a, b] implies $f \in \mathcal{R}(\alpha)$ C. Pointwise converges of a sequence implies uniform convergence of that sequence D.None of the above

- 72. If $\{f_n\}$ and $\{g_n\}$ converge uniformly on *E*. Then A. $\{f_n + g_n\}$ converge uniformly on E B. $\{f_n g_n\}$ converge uniformly on E C. Both (A) and (B) D. Neither (A) or (B)
- 73. If $\{f_n\}$ and $\{g_n\}$ converge uniformly on E. Then $\{f_n \ g_n\}$ converge uniformly on E if A. $\{f_n\}$ and $\{g_n\}$ are continuous
 - B. $\{f_n\}$ and $\{g_n\}$ are differentiable
 - C. $\{f_n\}$ and $\{g_n\}$ are bounded functions
 - D. $\{f_n\}$ and $\{g_n\}$ are monotonic functions
- 74. Which one of the following sequences are uniformly convergent
 - A. $f_n(x) = \frac{1}{nx+1}$; $x \in [0,1]$ B. $f_n(x) = \frac{x}{nx^2+1}$; $x \in [0,1]$

 - C. Both (A) and (B)
 - D. Neither (A) nor (B)
- 75. Which of the following statements are false
 - A. There exists real continuous function on the real line which is differentiable
 - B. There exists no real continuous function on the real line which is nowhere differentiable
 - C. There exists real continuous function on the real line which is integrable
 - D. All of these

- 76. A sequence of functions $\{f_n\}$ is said to be pointwise bounded on E if
 - A. The sequence $\{f_n(x)\}$ is bounded for some $x \in E$
 - B. The sequence $\{f_n(x)\}$ is convergent for every $x \in E$
 - C. The sequence $\{f_n(x)\}$ is bounded for every $x \in E$
 - D. The sequence $\{f_n(x)\}$ is convergent for some $x \in E$
- 77. Let $\{f_n\}$ be a pointwise bounded sequence of complex functions on a set *E*. Then $\{f_n\}$ has a convergent subseuence in *E* if
 - A. E is compact
 - B. *E* is countable
 - C. E is closed
 - D. *E* is bounded
- 78. A family F of complex functions f defined on a set E in a metric space X is said to be equicontinuous on E if
 - A. for every $\varepsilon > 0$, there exists a $\delta > 0$ such that $|f(x) g(y)| < \varepsilon$ whenever $d(x, y) < \delta$, $x, y \in E$
 - B. Each function in F is continuous on E
 - C. Each function in F is uniformly continuous on E
 - D. for every $\varepsilon > 0$, there exists a $\delta > 0$ such that $|f(x) f(y)| < \varepsilon$ whenever $d(x, y) < \delta$, $x, y \in E$ and $f \in F$
- 79. Let $\{f_n\}$ be a sequence of functions defined on a set *E*. If there exists a number M such that $|f_n(x)| < M$ for all $x \in E$, then we say that $\{f_n\}$ is
 - A. Uniformly bounded on E
 - B. Uniformly continuous on *E*
 - C. Convergent on E
 - D. Uniformly convergent on E
- 80. The Stone Weierstrass Theorem states that
 - A. If f is a complex function on [a, b], then \exists a sequence of polynomials P_n such that $\lim_{n \to \infty} P_n(x) = f(x)$ uniformly on [a, b].
 - B. If f is a continuous complex function on [a, b], then \exists a sequence of polynomials P_n such that $P_n(x)$ converges to f(x) pointwise on [a, b].
 - C. If *f* is a continuous complex function on [a, b], then \exists a sequence of polynomials P_n such that $\lim_{n \to \infty} P_n(x) = f(x)$ uniformly on [a, b].
 - D. If f is a complex function on [a, b], then \exists a sequence of polynomials P_n such that $P_n(x)$ converges to f(x) pointwise on [a, b].

81. *f* is said to be expanded in a power series about the point x = a if

A. $f(x) = \sum_{n=0}^{\infty} c_n (x+a)^n$ converges for |x-a| < R, for some R > 0.

- B. $f(x) = \sum_{n=0}^{\infty} ax^n$ converges for all $x \in (-R, R)$, for some R > 0.
- C. $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ converges for all $x \in (-R, R)$, for some R > 0
- D. $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ converges for |x-a| < R, for some R > 0
- 82. Suppose the series $\sum_{n=0}^{\infty} c_n x^n$ converges for |x| < R and define $f(x) = \sum_{n=0}^{\infty} c_n x^n$ for |x| < R. Then
 - A. *f* is continuous but not differentiable in (-R, R)
 - B. f is not continuous and differentiable in (-R, R)

- C. *f* is differentiable and $f'(x) = \sum_{n=1}^{\infty} nc_n x^{n-1}$ for |x| < R
- D. $\sum_{n=0}^{\infty} c_n x^n$ converges uniformly on [-R, R]
- 83. Suppose $\sum_{n=0}^{\infty} c_n$ converges and put $f(x) = \sum_{n=0}^{\infty} c_n x^n$ where -1 < x < 1. Then what will be the limit $\lim_{x \to 1} f(x)$?
 - A. $\sum_{n=0}^{\infty} c_n$
 - В. —1
 - C. 1
 - D. Does not exist
- 84. Suppose the series $\sum a_n x^n$ and $\sum b_n x^n$ converge in the segment S = (-R, R). Let *E* be the set of all $x \in S$ at which $\sum a_n x^n = \sum b_n x^n$. Then what is the condition for satisfying $\sum a_n x^n = \sum b_n x^n$ for all $x \in S$?
 - A. E is bounded
 - B. *E* has a limit point in *S*
 - C. E is a finite set
 - D. $E = \emptyset$
- 85. The series $E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ converges
 - A. For every complex number z
 - B. Only for those complex number z whose real part is greater than or equal to 0
 - C. Only at z = 0
 - D. Only for those complex number z whose imaginary part is greater than or equal to 0

86. If we define $E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$, then which of the following is true?

A. E(Z + W) = E(Z) + E(W)

B. $E(Z + W) \le E(Z) + E(W)$

- C. E(Z + W) = E(Z).E(W)
- D. $E(Z + W) \ge E(Z) + E(W)$

87. What is the product E(z). E(-z) where $E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$

- A. 0B. 1C. ∞
- D. -1
- D. -
- E.

88. If we define $E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$, which of the following is true?

- A. E(z) = 0 for some z
- B. E(x) < 0 for all real x
- C. E(x) < 0 if x > 0
- D. $E(z) \neq 0$ for all z

89. Which of the following is not a property of E(z) where $E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$

- A. $E(x) \rightarrow 0$ as $x \rightarrow -\infty$ along the real axis
- B. *E* is strictly decreasing on the whole real axis
- C. E is strictly increasing on the whole real axis

D. $E(x) \rightarrow +\infty$ as $x \rightarrow +\infty$ along the real axis

90. For every *n*, what is the limit $\lim_{x \to +\infty} x^n e^{-x}$?

- A. +∞
- B. −∞
- C. 0
- D. 1
- 91. What is mean by the algebraic completeness of the Complex Field?
 - A. Every non constant polynomial with complex coefficients has a complex root.
 - B. Every non constant polynomial with complex coefficients has exactly one complex root.
 - C. Every polynomial with complex coefficients has atmost one complex root.
 - D. Every non constant polynomial has no any complex root.

92. If $C(x) = \frac{1}{2}[E(ix) + E(-ix)]$, then which of the following is true?

- A. C(0) = 0
- B. $C(x) \neq 0 \forall x$
- C. There exist positive integers x such that C(x) = 0

D.
$$C'(x) = S(x)$$
 where $S(x) = \frac{1}{2i} [E(ix) - E(-ix)]$

- 93. The function E is periodic with period
 - A. 2π
 - B. 2*πi*
 - С. πі
 - D. π

94. The functions C and S are periodic with period

- Α. 2πί
- Β. π
- C. *π*ί
- D. 2π

95. If there is a unique t in $[0, 2\pi)$ such that E(it) = z, then

- A. |z| < 1
- B. |z| > 1
- C. |z| = 1
- D. z = 0

96. Every power series is

- A. Convergent
- B. Divergent
- C. Uniformly Convergent
- D. Nowhere Convergent

97. If
$$S(x) = \frac{1}{2!} [E(ix) - E(-ix)]$$
, then
A. $\overline{S(x)} = S(x)$
B. $S(0) = 0$

C.
$$S'(x) = C(x)$$
, where $C(x) = \frac{1}{2}[E(ix) - E(-ix)]$
D. $S\left(\frac{\pi}{2}\right) = 1$

- 98. Suppose the series ∑_{n=0}[∞] c_nxⁿ converges for |x| < R and define f(x) = ∑_{n=0}[∞] c_nxⁿ, |x| < R. Then ∑_{n=0}[∞] c_nxⁿ converges uniformly on [-R + ε, R ε] no matter which ε > 0 is chosen. The function f is continuous and differentiable in A. (-R + ε, R ε)
 B. [-R + ε, R ε]
 C. [-R, R]
 D. (-R, R)
- 99. Let $f_n(x) = \frac{x^2}{x^2 + (1-nx)^2}$, $0 \le x \le 1, n = 1,2,3...$ Then which statement is true. A. $\lim_{n \to \infty} f_n(x) = 0$ B. $\{f_n\}$ is uniformly bounded on [0,1]C. $f_n\left(\frac{1}{n}\right) = 1$ D. Subsequence converges uniformly on [0,1]

100. When we say that f is expanded on a power series about the point x = a

A. If $f(x) = \sum_{n=0}^{\infty} c_n x^n$ converges $\forall x \in (-R, R)$ B. If $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ converges for |x-a| < RC. If $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ converges for |x-a| > RD. If $f(x) = \sum_{n=0}^{\infty} c_n x^n$ diverges $\forall x \in (-R, R)$