SEMESTER -I
 BASIC TOPOLOGY MULTIPLE CHOICE QUESTIONS

1. Which of the following is false
A. Arbitrary union of open sets is open
B. Finite intersection of open sets is open
C. Finite union of open sets is open
D. Arbitrary intersection of open sets is open
2. Let τ be a topology on a nonempty set X . Then any member of τ is called....
A. Closed set
B. Clopen set
C. Open set
D. None of these
3. The only convergent sequence in discrete space is those which are
A. Convergent to more than one point
B. Alternating
C. Eventually constant
D. All of these
4. Let X be a co finite topological space and $\mathrm{X}-\mathrm{A}$ is finite set. Then A is
A. Empty set
B. Clopen
C. Closed
D. Open
5. A space in which every finite sets are closed are called
A. Co complement space
B. Indiscrete space
C. Cofinite space
D. Scattered topology
6. Let τ_{1}, τ_{2} are topologies on a non empty set X with $\tau_{1} \supset \tau_{2}$
A. τ_{1} stronger than τ_{2}
B. τ_{1} weaker than τ_{2}
C. τ_{1} and τ_{2} are uncomparable
D. None of these
7. The topology induced by Euclidean metric on R is
A. Discrete topology
B. Indiscrete topology
C. Usual topology
D. None of these
8. Example of a topology which is not metrisable
A. Discrete topology
B. Usual topology
C. Sierpinski's topology
D. All of these
9. If a topology on a set X has countable base, then the space is called
A. Second category
B. First countable
C. Second countable
D. First category
10. Consider the statements S_{1} : Second countability is hereditary
S_{2} : Metrizability is not hereditary
A. Both S_{1} and S_{2} are true
B. S_{1} true,S_{2} false
C. S_{1} false, S_{2} true
D. S_{1}, S_{2} False
11. If τ_{1} and τ_{2} are two topologies on a set, then which of the following is a topology.
A. $\tau_{1} \cup \tau_{2}$
B. $\tau_{1} \cap \tau_{2}$
C. $\tau_{1} \oplus \tau_{2}$
D. All of these
12. Which statement is correct
A. In a second countable space, every open cover has a finite subcover
B. In a second countable space, every open cover has a countable subcover
C. Both A and B is correct
D. Both A and B is false
13. In a scattered line topology, Which sequence converge to an irrational number
A. Sequence of irrationals
B. Sequence of rationals
C. Eventually constant sequence
D. Alternating sequence
14. The topological space in which all the subsets of the underlying set X are open is called
A. Discrete
B. Indiscrete
C. Scattering
D. None of these
15. Let B is a base for a topological space X then
A. Every open set can be written as union of some members of B
B. Every open set can be written as intersection of some members of B
C. Every closed set can be written as union of some members of B
D. None of these
16. Consider the statements $S_{1}: R$ with usual topology is second countable

S_{2} : R with semi open interval topology is not second countable

A. S_{1} True, S_{2} false
B. S_{1} false, S_{2} true
C. $\mathrm{S}_{1}, \mathrm{~S}_{2}$ True
D. $\mathrm{S}_{1}, \mathrm{~S}_{2}$ False
17. Let $X=\{a, b, c\}$.Which of these is a topology
A. $\{X, \emptyset,\{a\},\{b\}\}$
B. $\{X, \emptyset,\{a\},\{b\},\{c\}\}$
C. $\{X, \varnothing,\{a\}\{c\}\}$
D. $\{X, \emptyset,\{a\},\{b\}\{a, b\}\}$
18. Every subspace of a metrisable space is...
A. Second countable
B. Metrisable
C. Separable
D. First countable
19. Let S be a sub base for a topological space X. Which of the following is true
A. Finite union of members of S is a base element
B. Arbitrary union of members of S is a base element
C. Finite intersection of members of S is a base element
D. None of these
20. Let X be a set with $n,(n \geq 3)$ distinct elements. Then which of these statement is true
A. There are at most $2^{\left(2^{n}-2\right)}$ topologies
B. There are at least $2^{\left(2^{n}-2\right)}$ topologies
C. There are at most $2^{n}-2$ topologies
D. There are exactly 2^{n} topologies
21. Let τ_{1} be the indiscrete topology and τ_{2} be the discrete topology on an arbitrary set X then
A. τ_{1} is weaker than τ_{2}
B. τ_{1} is stronger than τ_{2}
C. $\tau_{1}=\tau_{2}$
D. τ_{1} and τ_{2} are not comparable
22. Which statement is correct
A. Every metric space is a topological space
B. Every topological space is metrisable
C. Every topological space is second countable
D. Every metric space is second countable
23. In an indiscrete topological space X, which one is true
A. Ful set X and null set are the only open sets
B. Full set X is open but not null set
C. A proper subset of X is open
D. All subsets of X are open
24. R with usual topology is
A. Metrisable and second countable
B. Second countable but not metrisable
C. Neither second countable nor metrisable
D. Metrisable but not second countable
25. Consider R with usual metric' d^{\prime}. Then which one is an open ball in the metric space (R, d)
A. Every closed intervals
B. Every open intervals
C. Union of open intervals
D. All the above
26. Let X be a space and A be a subset of X such that interior $(\mathrm{X}-\mathrm{A})=\mathrm{X}-\mathrm{A}$. Then A is
A. Open
B. Closed
C. Not open
D. Both open and closed
27. Which among the following is false statement.
A. Complement of an open set is closed
B. Finite union of closed sets is closed
C. Arbitrary intersection of closed set is closed
D. Arbitrary intersection of open set is open
28. Which of the following is not a property of closure operator.
A. Every closed sets are its fixed points
B. Closure operator commutes with finite unions.
C. Closure operator commutes with finite intersections.
D. Closure operator is idempotent.
29. If closure $(A)=X$, then
A. A is closed in X
B. A is separable
C. A is dense in X
D. X is dense in A
30. If a set A is a neighborhood of each of its points, then A is
A. Open
B. Closed
C. Clopen
D. Second countable
31. The largest open set contained in A is called
A. Interior of A
B. Derived set of A
C. Closure of A
D. None of these
32. The set which is the intersection of closure (A) and closure $(\mathrm{X}-\mathrm{A})$ is
A. Neighborhood of A
B. Neighborhood of X-A
C. Boundary of A
D. Boundary of X
33. Which of the following is true for a continuous function f from X to Y .
A. Inverse image of open set in Y is open in X
B. Inverse image of closed set in Y is closed in X
C. Both A and B
D. None of these
34. Let f be an open map. Then which of the following is necessarily true.
A. Inverse of f is an open map
B. Inverse of f is a closed map
C. Inverse of f is a continuous map
D. Inverse of f is an injective map.
35. Which of the following is true
A. R is homeomorphic to $(0,1)$
B. $(0,1)$ homeomorphic to $[0,1]$
C. R is homeomorphic to $[0,1]$
D. All of these
36. The weak topology determined by projection functions is called
A. Quotient topology
B. Discrete topology
C. Product topology
D. Scattering topology
37. Statement $1:$ Property of being discrete space is divisible property

Statement 2 : Second countability is a divisible property
Which of the following is correct.
A. Statement 1 is true but Statement 2 is false
B. Statement 1 is false but statement 2 is true
C. Statement 1 and Statement 2 both true
D. Both statements false
38. The intersection of all closed sets containing A is called
A. Interior of A
B. Boundary of A
C. Closure of A
D. Derived set of A
39. Let X be a space and x belong to X and A subset of X. If every open set containing x contains a point in A other than x, then x is
A. Limit of A
B. Accumulation point of A
C. Accumulation point of X-A
D. None of these
40. Which of the following is false:
A. f is continuous if and only if inverse image of open set is open
B. Composition of continuous function is continuous
C. Projection map is continuous
D. None of these
41. Which of the following are not sufficient for a function to be homeomorphism
A. f is continuous bijection and open
B. f is continuous bijection
C. Inverse of f is open and f is bijection
D. All of these
42. Let A be a set such that A is disjoint from its boundary and B is such that B contains its boundary. Then
A. A is open, B is open
B. A is closed, B is closed
C. A is open, B is closed
D. A is closed, B is open
43. Let X be a discrete space and G non empty subset of X . Set of all accumulation points of G is
A. X
B. Empty set
C. G
D. X-G
44. Which of the following is true
A. Every open balls are open sets
B. Every open sets are open balls
C. Every open sets are complements of closed balls
D. Closure of an open ball is always closed ball
45. A topological property is said to be \qquad if whenever a space has it, so does every quotient space of it.
A. Hereditary
B. Preserved under continuous functions
C. Divisible
D. All of these
46. The dense subsets of an indiscrete space are
A. Null set
B. All non empty Subsets
C. Full set and nullset
D. None of these
47. Let $A \subset X$.If closure of a set A and the set A are equal then the set A is
A. Open in X
B. Closed in X
C. Dense in X
D. Countable in X
48. Which of the following is True
A. Every open surjective map is a quotient map
B. Every closed surjective map is a quotient map
C. Both A and B
D. Only A
49. Projection maps are
A. Open and surjective
B. Closed and surjective
C. Both closed and open
D. Closed and quotient
50. Exterior of a set is
A. Interior of its complement
B. Interior of the closure of the set
C. Boundary of its complement
D. Closure of the complement
51. If X is a compact space and A is a subset of X is closed in X then A, in its relative topology is \qquad
(a) Open (b) Closed (c) Compact (d)Lindeloff
52. If X is a Lindeloff space and A is a subset of X is closed in X then A, in its relative topology is \qquad
(a) Open (b) Closed (c)Lindeloff (d) none of these
53. A topological property is said to be weakly hereditary if whenever a space has it, so does every \qquad
(a)Open subspace (b)Closed Subspace (c) Subspace (d) Subset
54. A space with a countable local base at each of its points is ?
(a) First Countable (b) Second Countable (c) Compact (d) Separable

5 . Components of a topological space are \qquad .sets.
(a) Open (b) Closed (c) Clopen (d) None of these
56. A space which contains a countable dense subset is called \qquad
(a) Separable (b) Connected (c) Compact (d) Lindeloff
57. Every continuous image of a compact space is \qquad
(a) Compact (b) Dense
(c) Separable
(d) Lindelofff
58. Which of the following is true.
(a) Compactness and property of Lindeloff are hereditary properties
(b) Compactness and property of Lindeloff are NOT hereditary properties
(c) Compactness is a hereditary property and property of Lindeloff is NOT a hereditary properties
(d) Compactness is NOT a hereditary property and property of Lindeloff is a hereditary properties
59. Which of the following is true.
(a) Compactness and property of Lindeloff are weakly hereditary properties
(b) Compactness and property of Lindeloff are NOT weakly hereditary properties
(c) Compactness is a weakly hereditary property and property of Lindeloff is NOT a weakly hereditary properties
(d) Compactness is NOT a weakly hereditary property and property of Lindeloff is a weakly hereditary properties
60. A subset A of a space X is said to be compact if \qquad
(a) every cover of A by open subsets of X has a finite subcover
(b) every cover of A by closed subsets of X has a finite subcover
(c) every cover of A by subsets of X has a finite subcover
(d) None of these
61. A subset A of a space X is said to be Lindeloff if . \qquad
(a) every cover of A by open subsets of X has a countable subcover
(b) every cover of A by closed subsets of X has a countable subcover
(c) every cover of A by subsets of X has a countable subcover
(d) None of these
62. A space is said to be separable if it contains a \qquad subset.
(a) Countable (b) Dense (c) Countable Dense (d) Closed
63. A topological property is said to be weakly hereditary if \qquad
(a) whenever a space has it so does every subspace of it
(b) whenever a space has it so does every open subspace of it
(c) whenever a space has it so does every closed subspace of it
(d) whenever a space has it so does every subset of it
64. A space is said to be first countable at a point if
(a) there exist a finite local base at the point
(b) there exist an countable local base at the point
(c) there exist a finite base
(d) there exist a countable base
65. A space is said to be first countable if it is first countable at \qquad of the space .
(a) each subset(b) each closed subset (c) each open subset (d)each point
66. If a space is connected then
(a) Only closed subset of X are empty set and X.
(b) Only clopen subset of X are empty set and X .
(c) Only open subset of X are empty set and X.
(d) None of these
67. Every closed and bounded interval is \qquad
(a) Dense (b) Lindeloff (c) Separable (d) Compact
68. Two subsets A and B of a topological space X are said to be separated if
(a) $A \cap B=\emptyset$ and $A \cup B=X$
(b) $\bar{A} \cap \bar{B}=\emptyset$ and $A \cup B=X$
(c) $\bar{A} \cap B=\varnothing$ and $A \cap \bar{B}=\emptyset$
(d) None of these
69. Components of a topological space are \qquad
(a) Open sets
(b) Closed sets
(c) Clopen sets
(d) None of these
70. Closure of a connected set is \qquad
(a) NOT connected
(b) sometimes connected
(c) always connected
(d) None of these
71. Maximally connected subset of a space is called.
(a) Closure
(b) Interior
(c) Component
(d) None of these
72. A space X is connected if it is impossible to find two non-empty subsets A and B of it such that
(a) $A \cap B=\varnothing$ and $A \cup B=X$
(b) $\bar{A} \cap \bar{B}=\emptyset$ and $A \cup B=X$
(c) $\bar{A} \cap B=\emptyset$ and $A \cup B=X$
(d) $A \cap \bar{B}=\emptyset$ and $A \cup B=X$
73. First countability is .
(a) Hereditary property
(b) Weakly hereditary property
(c) Absolute property
(d) Relative property
74. Compactness and property of being Lindeloff are
(a) Absolute property
(b)Relative property
(c) Both A and B
(d) None of these
75. Denseness is a
(a) Absolute property
(b) Relative property
(c) Both A and B
(d) None of these
76. Which of the following is an example of a locally connected space?
a. Indiscrete space
b. Space of rationals with usual relative topologies
c. Space of irrationals with usual relative topologies
d. Comb space
77. Which of the following statements is true for a locally connected space X ?
a. Components of open subsets of X are open in X
b. X has a base consisting of connected subsets
c. For every $x \in X$ and every neighbourhood N of x there exists a connected open neighbourhood M of x such that $M \subseteq N$

d.All of these

78. Which of the following statements is not true for a locally connected space?
a. Every quotient space of a locally connected space is locally connected
b. Local compactness is a hereditary property
c. Comb space is an example of locally connected spaces
d. Discrete spaces are locally connected
79. A path in a topological space X is
a. A continuous function from X to X
b. A continuous function from $[0,1]$ to X
c. An injective function from $[0,1]$ to X
d. An injective function from X to X
80. A path α is said to be simple if the function α is
a. Surjective
b.Not injective
c.Not surjective
d.Injective
81. A simple closed path is
a.A closed path α which is onto except for $\alpha(0)=\alpha(1)$
b.A closed path α which is one-one except for $\alpha(0)=\alpha(1)$
c. Any path α which is onto except for $\alpha(0)=\alpha(1)$
d.Any path α which is onto except for $\alpha(0)=\alpha(1)$
82. Which of the following is not an example of a path-connected space?
a.Topologist's sine curve
b.Real line
c.Unit sphere
d.Euclidean spaces
83. Which of the following statements is correct for a path-connected space?
a.Path-connectedness is not preserved under continuous functions
b.Every path-connected space is connected
c. Topological product of a finite number of non-empty path-connected spaces need not be path-connected
d.Every connected space is path-connected
84. Which of the following is not a hereditary property?
a.Metrisability
b.Regularity
c.Local connectedness
d. T_{2}
85. Which of the following is the weakest separation axiom?
a. T_{0}
b. T_{1}
c. T_{2}
d. T_{3}
86. Which of the following is not an equivalent statement for a T_{1} topological space (X, T) ?
a.Every finite subset of X is closed
b.Topology T is stronger than the cofinite topology on X
c.For every $x \in X$, singleton sets $\{x\}$ are closed
d.Every infinite subset of X is closed
87. T_{2} space is also called a
a.Completely normal space
b.Hausdorff space
c.Regular space
d.Normal space
88. Which of the following is the correct hierarchy of the separation axioms?
a. $T_{4} \Rightarrow T_{3} \Rightarrow T_{2} \Rightarrow T_{1} \Rightarrow T_{0}$
b. $T_{0} \Rightarrow T_{1} \Rightarrow T_{2} \Rightarrow T_{3} \Rightarrow T_{4}$
c. $T_{3} \Rightarrow T_{4} \Rightarrow T_{1} \Rightarrow T_{2} \Rightarrow T_{0}$
d. $T_{4} \Rightarrow T_{2} \Rightarrow T_{3} \Rightarrow T_{1} \Rightarrow T_{0}$
89. A topological space X is said to be completely regular if
a.The space is normal and T_{1}
b.The space is regular and T_{1}
c. For a point $x \in X$ and a closed set C not containing x there exists a continuous function $f: X \rightarrow[0,1]$ such that $f(x)=0$ and $f(y)=1, \forall y \in C$
d.For a point $x \in X$ and an open set C not containing x there exists a continuous function $f: X \rightarrow[0,1]$ such that $f(x)=0$ and $f(y)=1, \forall y \in C$
90. A topological space X is said to be regular if
a.For each point x and a closed set C not containing the point x there exists disjoint open sets U and V such that $x \in U$ and $C \subset V$
b.For each point x and an open set C not containing the point x there exists disjoint closed sets U and V such that $x \in U$ and $C \subset V$
c.For every two disjoint closed sets C and D there exists disjoint open sets U and V such that $C \subset U$ and $D \subset V$
d.For every two disjoint open sets C and D there exists disjoint closed sets U and V such that $C \subset U$ and $D \subset V$
91. Every T_{3} space is
a.Regular and T_{2}
b.Regular and T_{1}
c.Normal and T_{1}
d.Normal and T_{2}
92. Every T_{4} space is
a.Regular and T_{2}
b.Regular and T_{1}
c.Normal and T_{1}
d.Normal and T_{2}
93. Which of the following statements is true?
a.Every T_{2} space is T_{1}
b.Every T_{2} space is T_{3}
c.Every T_{2} space is T_{4}
d.Every T_{1} space is T_{2}
94. Which of the following statements is false?
a.Every completely normal space is normal
b.Every completely regular space is regular
c. All metric spaces are T_{4}
d.Every T_{3} space is Tychonoff
95. A space is said to be Tychonoff if it is
a.Regular and T_{1}
bNormal and T_{1}
c.Completely regular and T_{1}
d.Completely normal and T_{1}
96. Let T be the topology on the set of reals \boldsymbol{R} whose members are $\emptyset, \boldsymbol{R}$ and sets of the form (a, ∞) for $a \in \boldsymbol{R}$. Then (\boldsymbol{R}, T) is a
a. T_{0} space
b. T_{1} space
c. T_{2} space
d. T_{3} space
97. All metric spaces are
a. T_{2}
b. T_{3}
c. T_{4}
e. All of these
98. Which of the following is a weakly hereditary property?
a. Regularity
b. Complete regularity
c. Normality
d. T_{2}
99. Which of the following is an equivalent statement for a normal topological space (X, T)?
a. For any open set C and any closed set G containing C, there exists an open set H such that $C \subset H$ and $\bar{H} \subset G$
b. For any closed set C and any open set G containing C, there exists an open set H such that $C \subset H$ and $\bar{H} \subset G$
c. The family of all closed neighbourhoods of any point of X forms a local base at that point.
d. For any $x \in X$ and any open set G containing x, there exists an open set H containing x and $\bar{H} \subset G$
100. A topological space X is said to be completely normal if
a. For a point $x \in X$ and a closed set C not containing x there exists a continuous function $f: X \rightarrow[0,1]$ such that $f(x)=0$ and $f(y)=1, \forall y \in C$
b. For each point x and a closed set C not containing the point x there exists disjoint open sets U and V such that $x \in U$ and $C \subset V$
c. For every two mutually separated subsets C and D there exists disjoint open sets U and V such that $C \subset U$ and $D \subset V$
d. For every two disjoint closed sets C and D there exists disjoint open sets U and V such that $C \subset U$ and $D \subset V$
