PG SEMESTER I ME010102:Linear Algebra Multiple Choice Questions

- 1. Which of the following is not a vector space?
 - (a) R over the field R
 - (b) N over the field R
 - (c) C over the field Q
 - (d) The set of all functions from \mathbb{R}^2 to \mathbb{R} over the field \mathbb{R}
- 2. Let V be the real vector space of all functions $f : R \to R$. If $V_1 = \{f \in V | f(0) = f(1)\}$ and $V_2 = \{f \in V | f(-x) = -f(x)\}$
 - (a) Neither V_1 nor V_2 are subspaces of V
 - (b) V_1 is a subspace of V but V_2 is not a subspace of V
 - (c) V_1 is not a subspace of V but V_2 is a subspace of V
 - (d) both V_1 and V_2 are subspaces of V
- 3. If the dimensions of subspaces V_1 and V_2 of a vector space V are 8 and 10 respectively and $dim(V_1 + V_2) = 4$, then $dim(V_1 \cap V_2)$ is
 - (a) 10
 - (b) 14
 - (c) 22
 - (d) 8

4. The dimension of the subspace $W = \{(x, y, z) | x - 2y = 0\}$ of \mathbb{R}^3 is

- (a) 1
- (b) 2
- (c) 3
- (d) 0
- 5. Which of the following are linearly independent subsets of R^3
 - (a) (1,4,0), (1,2,1), (-5,0,6)
 - (b) (1,3,0), (2,0,1), (3,3,1)
 - (c) (1, 1, 3), (-1, 0, 2), (-4, 0, 8)

- (d) (1, 1, 0), (1, -3, -4), (-1, 1, 2)
- 6. Which of the following is a basis of the vector space R^3
 - (a) (1,0,0), (0,1,1)
 - (b) (1, 2, 0), (0, -1, 3), (-1, -4, 6)
 - (c) (1,1,0), (0,0,1), (1,1,1)
 - (d) (1,0,0), (0,1,1), (1,0,1), (1,1,0)
- 7. Which of the following is not a property of a vector space V over the field F where $\alpha, \beta \in V$ and $a, b \in F$.
 - (a) $(a+b)\alpha = a\alpha + b\alpha$
 - (b) $a(b\alpha) = (ab)\alpha$
 - (c) $\alpha\beta = \beta\alpha$
 - (d) $\alpha + \beta \in V$
- 8. Determine the scalars a, b, c so that the vector (1, 1, 1) is a linear combination of (1, 2, 3), (1, 0, 1), (1, 1, 0)
 - (a) a = 1/4, b = 1/4, c = 1/2
 - (b) a = 1/2, b = 1/4, c = 1/4
 - (c) a = 1/4, b = 1/2, c = 1/4
 - (d) a = 1/4, b = 1/4, c = 1/4
- 9. Which of the following subsets are subspace of the vector space of all $n \ge n$ matrices over R
 - (a) Set of all matrices whose diagonal elements are all 0
 - (b) Set of all matrices whose diagonal elements are all 1
 - (c) Set of all matrices whose determinant is 1
 - (d) Set of all matrices whose trace is 0
- 10. Let V be a vector space over a field F. Let V_1 and V_2 be subspaces of V. Then
 - (a) $V_1 \cup V_2$ is a subspace of V
 - (b) $V_1 \cap V_2$ is a subspace of V
 - (c) $V_1 + V_2$ is not a subspace of V
 - (d) $V_1 \setminus V_2$ is a subspace of V
- 11. Which of the following vectors not span the vector space R^3
 - (a) (1,2,3), (2,5,6), (0,0,1)

- (b) (1,1,0), (0,1,1), (1,0,1) (1,1,1)
- (c) (1,5,2), (2,5,1), (1,3,1) (4,1,2)
- (d) (1,0,0), (0,1,0), (4,5,0)
- 12. Which of the following statement is false
 - (a) Any set that contains a linearly dependent set is linearly dependent
 - (b) Any set which contains the 0 vector is linearly dependent
 - (c) Any set that contains a linearly independent set is linearly independent
 - (d) A set S of vectors is linearly dependent if and only if each finite proper subset of S is linearly dependent.
- 13. Let V be a finite dimensional vector space and let n = dim(V). Which of the following statements are false
 - (a) Any subset of V which contains more than n vectors is linearly dependent
 - (b) No subset of V which contains less than n vectors can span V
 - (c) Any set which spans V is linearly independent
 - (d) Any two bases of V have the same (finite) number of elements
- 14. Which of the statement is false
 - (a) If two vectors are linearly dependent, then one of them is a scalar multiple of the other
 - (b) Linearly independent subset of a finite dimensional vector space is finite
 - (c) Proper subset of a basis is a spanning set
 - (d) The vector space R over Q is infinite dimensional
- 15. Let V be the vector space of all mxn matrices over the field F. Then dim V =
 - (a) m + n
 - (b) *mn*
 - (c) m n
 - (d) n^2
- 16. Let A and B be $m \times n$ matrices over the field F. Let A and B are row-equivalent. Then
 - (a) A and B have the same row space
 - (b) A and B have different row space
 - (c) B = PA, where P is an invertible mxm matrix
 - (d) The homogeneous systems AX = 0 and BX = 0 have the same solutions

- 17. Let V be the vector space of all 2x2 matrices over R. consider the subspaces W_1 and W_2 of the form $W_1 = \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix}$ and $W_2 = \begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix}$, where x, y are scalars. If $m = \dim(W_1 \cap W_2)$ and $n = \dim(W_1 + W_2)$, then
 - (a) m = 1, n = 3
 - (b) m = 3, n = 1
 - (c) m = 2, n = 3
 - (d) m = 3, n = 2

18. The dimension of subspace $W = \{(x, y, z) | x + y + z = 0\}$ of \mathbb{R}^3 is

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- 19. The number of subspaces of R^2
 - (a) 1
 - (b) 2
 - (c) Finite
 - (d) Infinite
- 20. Suppose B is a basis for a real vector space V of dimension greater than 1. Which of the following is true
 - (a) The zero vector of V is an element of B
 - (b) B has a proper subset that spans S
 - (c) B is a proper subset of a linearly independent subset of V
 - (d) There is a basis for V that is disjoint from B
- 21. Which of the following vectors are linearly independent
 - (a) $\{1, x, 2x + 7\}$
 - (b) $\{7, x^2, x^3\}$
 - (c) $\left\{ \begin{bmatrix} 1 & 2 \\ 0 & 7 \end{bmatrix}, \begin{bmatrix} 7 & 2 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 9 & 6 \\ 1 & 14 \end{bmatrix} \right\}$
 - (d) (1,1,1), (1,2,3), (2,1,0)
- 22. If V_1 and V_2 are 3-dimensional subspaces of a 4-dimensional vector space V, then the smallest possible dimension of $V_1 \cap V_2$ is

- (a) 0
- (b) 1
- (c) 2
- (d) 3

23. Let V be the vector space of all polynomials of degree ≤ 5 over R. Then dimension of V is

- (a) 5
- (b) 6
- (c) 7
- (d) 8

24. Consider the vector space R^2 over R and let S = (4, 0). Then span(S) is

- (a) S
- (b) $\{(x,0)|x \in R\}$
- (c) $\{(0, y) | x \in R\}$
- (d) R^2

25. Which of the following is an infinite dimensional vector space

- (a) R^2 over R
- (b) C over R
- (c) R over Q
- (d) R over R
- 26. What is a linear operator?
 - (a) A linear operation from a set to itself.
 - (b) A linear operaton from a vector space to itself.
 - (c) A linear transformation from a vector space to itself.
 - (d) A linear transformation from a vectoe space to another vector space.
- 27. Which of the following is correct for a vector space V and a linear transformation T.
 - (a) Rank(V) + Nullity(V) = dim(T)
 - (b) Rank(T) + Nullity(T) = dim(V)
 - (c) Rank(V) + Nullity(T) = dim(T)
 - (d) Rank(T) + Nullity(V) = dim(T)

- 28. Let V be an m-dimensional vector space over the field and W be an n-dimensional vector space over a field over a field F. Then what is the dimension of L(V,W).
 - (a) mn
 - (b) m+n
 - (c) m-n
 - (d) $\frac{m}{n}$

29. Inverse of a linear transformation is a linear transformation.

- (a) Never
- (b) Some times
- (c) Always
- (d) Depends on the matrix related to the linear transformation.
- 30. If U and T are linear transformations, then
 - (a) $(UT)^{-1} = U^{-1}T^{-1}$
 - (b) $(UT)^{-1} = (T^{-1}U^{-1})^{-1}$
 - (c) $(UT)^{-1} = (U^{-1}T^{-1})^{-1}$
 - (d) $(UT)^{-1} = T^{-1}U^{-1}$

31. Every n-dimensional vector space over the field F is isomorphis to the space

- (a) nF
- (b) F^n
- (c) Fn
- (d) n^F
- 32. Two n \times n matrices are similar, if
 - (a) They have same rank.
 - (b) they have same determinant
 - (c) If there exist an n ×n matrix P such that $B = P^{-1}AP$
 - (d) None of the above.
- 33. Suppose V is a vector space with dimension n. The a subspace of V with a dimension n-1 is called.
 - (a) Hyperspace
 - (b) Hyperplane
 - (c) Subspace

- (d) Hyper subspace.
- 34. Annihilator of a set in a vector space is
 - (a) Is a set of linear transformations
 - (b) Is a set of linear functional
 - (c) A single linear transformation.
 - (d) A single linear functional.
- 35. The sum of dimensions of a subspace and its annihilator is.
 - (a) Dimension of the full space
 - (b) 0
 - (c) < 0
 - (d) > 0
- 36. A linear functional is
 - (a) A function from a vector space to itself.
 - (b) A linear transformation from a vector space to the field.
 - (c) A linear transformation from a vector space to itself.
 - (d) A function from a vector space to field.
- 37. Which of the following statement is true about trace(A)
 - (a) It is the sum of diagonal elements of A.
 - (b) It is a linear functional.
 - (c) Both A and B
 - (d) Neither A nor B
- 38. Rank of a linear functional is
 - (a) 0
 - (b) 1
 - (c) Can take any value
 - (d) None.
- 39. Find the wrong one from the given statements.
 - (a) If A is diagonalizable and invertible, then A^{-1} is diagonalizable.
 - (b) If A is diagonalizable, then A^T is diagonalizable.

- (c) If every eigenvalue of a matrix A has algebraic multiplicity 1, then A is diagonalizable
- (d) An $n \times n$ matrix with fewer than n distinct eigenvalues is not diagonalizable.
- 40. Let $T: V \to V$ be a linear operator and $T(x) = \lambda x$ for some scalar λ . Then x is called
 - (a) an eigenvector of T.
 - (b) an eigenvalue of T .
 - (c) an eigenspace of T
 - (d) None of these.
- 41. If A is an $m \times n$ matrix, then the null space of A
 - (a) a subspace of \mathbb{R}^n
 - (b) a subspace of \mathbb{R}^m
 - (c) a subspace of R^{mn}
 - (d) a subspace of $R^{\min(m,n)}$
- 42. The rank of a matrix A is the
 - (a) dimension of the row space of A.
 - (b) dimension of the column space of A.
 - (c) both A and B
 - (d) dimension of the null space of A.
- 43. Let $T : \mathbb{R}^5 \to \mathbb{R}^3$ be the linear transformation defined by $T(x_1, x_2, x_3, x_4, x_5) = (x_1 + x_2, x_2 + x_3 + x_4, x_4 + x_5)$. Find the nullity of the standard matrix for T.
 - (a) 5
 - (b) 3
 - (c) 2
 - (d) 1

44. For a matrix A, the row space of A^T is same as

- (a) row space of A
- (b) column space of A
- (c) column space of A^T
- (d) null space of A
- 45. Which of the following is true?

- (a) Every linearly independent set of five vectors in \mathbb{R}^5 is a basis for \mathbb{R}^5
- (b) Every set of five vectors that spans R^5 is a basis for R^5
- (c) Every set of vectors that spans \mathbb{R}^5 cotains a basis for \mathbb{R}^5
- (d) All are true

46. If A and B are square matrices of the same order, then tr(AB) =

- (a) tr(A + B)
- (b) tr(A)tr(B)
- (c) tr(BA)
- (d) tr(A) + tr(B)
- 47. Which of the following is a subspace of \mathbb{R}^3 ?
 - (a) All vectors of the form (a, 0, 0)
 - (b) All vectors of the form (a, 1, 1)
 - (c) All vectors of the form (a, b, c) where b = a + c + 1
 - (d) None of these
- 48. Let f = cos(2x), g = sin(2x). Which of the following lie in the space spanned by f and g?
 - (a) $3 + x^2$
 - (b) $\sin(x)$
 - (c) Both A and B
 - (d) Neither A nor B

49. What is the maximum possible rank of an $m \times n$ matrix A that is not square?

- (a) $rank(A) \ge min(m, n)$
- (b) $rank(A) \le min(m, n)$
- (c) rank(A) = min(m, n)
- (d) rank(A) = max(m, n)
- 50. If 0 is an eigenvalue of a matrix A, then the set of columns of A is
 - (a) linearly independent or linearly dependent.
 - (b) linearly dependent always.
 - (c) linearly independent always.
 - (d) Cannot be determined

- 51. Which of the following function on the set of 3×3 matrices is 3-linear?
 - (a) $D(A) = A_{11} + A_{22} + A_{33}$
 - (b) D(A) = 0
 - (c) $D(A) = A_{11}A_{22}A_{33}$
 - (d) D(A) = 1

52. If A is an $n \times n$ matrix with real entries and rows of A are linearly independent, then

- (a) det A = 0
- (b) $detA \neq 0$
- (c) det A < 0
- (d) detA > 0
- 53. Let D be an alternating 2-linear function on the set of 2×2 matrices over a field F. Then which of the following statement is true for any two rows α and β of the matrix?
 - (a) $D(\alpha, \beta) = D(\beta, \alpha)$
 - (b) $D(\alpha, \beta) = -D(\beta, \alpha)$
 - (c) $D(\alpha,\beta) = 0$
 - (d) $D(\alpha, \beta) = D(\alpha, \alpha)$

54. The determinant function on the set of $n \times n$ matrices over the field F is not

- (a) one-one
- (b) onto
- (c) n-linear
- (d) alternating
- 55. If A is an *nn* matrix over a field R with det A = 30, then the determinant of the matrix obtained by interchanging two columns of A is
 - (a) -30
 - (b) 1/30
 - (c) 3.30
 - (d) 0
- 56. Which of the following is not always true?
 - (a) If A is an $n \times n$ matrix over the field F, $det(A^t) = detA$.
 - (b) If A and B are n×n matrices over the field F, det(A + B) = detA + detB
 - (c) If A and B are $n \times n$ matrices over the field F, det(AB) = (detA)(detB)

- (d) If A is an invertible $n \times n$ matrix over the field F, $det(A^{-1}) = (detA)^{-1}$.
- 57. If A is an $n \times n$ matrix over a field F with $AA^t = I$, then
 - (a) A = I
 - (b) A is non-singular
 - (c) A is singular
 - (d) detA = 1

58. If A and B are n×n matrices over the field F, A non-singular and AB=0, then B is

- (a) Zero matrix
- (b) Identity matrix
- (c) Non-singular matrix
- (d) A^{-1}
- 59. Let A be an $n \times n$ skew-symmetric matrix with complex entries and n is odd, then detA is
 - (a) 1
 - (b) -1
 - (c) 0
 - (d) $(-1)^n$
- 60. The determinant of a triangular matrix is
 - (a) the product of its diagonal entries
 - (b) always zero
 - (c) the sum of its diagonal entries
 - (d) always positive
- 61. If A and B are similar matrices over a field F, then
 - (a) $detB = detA^{-1}$
 - (b) $detB = (detA)^{-1}$
 - (c) detB = detA
 - (d) detB = 0
- 62. Which of the following is not a property of determinant?
 - (a) Determinant function is linear.
 - (b) If two rows of a matrix are equal, then its determinant is zero.

- (c) The value of non-zero determinant of a matrix changes if any two rows of the matrix are interchanged.
- (d) The determinant remains unchanged if a matrix is obtained by adding a multiple of one row of the matrix to another row of the same matrix.
- 63. If A is a 2×2 matrix over R with det(A + I) = 1 + detA, then which of the following is always correct?
 - (a) det A = 0
 - (b) A = 0
 - (c) trace(A) = 0
 - (d) det A = 1
- 64. If $A^2 A + I = 0$, then $A^{-1} = ?$
 - (a) A^2
 - (b) A + I
 - (c) A I
 - (d) I A
- 65. If A and B are two $n \times n$ matrix over R with $c \in R$, then which of the following is always true?
 - (a) $det(cAB) = c^n det(A) det(B)$
 - (b) det(cA B) = cdet(A) det(B)
 - (c) det(cA B) = cdet(A) + det(B)
 - (d) det(cAB) = cdet(A)det(B)
- 66. Let σ and τ be the permutations of degree 4 defined by $\sigma 1=2,\sigma 2=3,\sigma 3=4,\sigma 4=1, \tau 1=3,\tau 2=1,\tau 3=2,\tau 4=4$. Then,
 - (a) both σ and τ are odd permutations
 - (b) both σ and τ are even permutations
 - (c) σ is odd and τ is even permutation
 - (d) σ is even and τ is odd permutation

67. If A is an 2×2 matrix over R such that A(adj A) = $\begin{bmatrix} 16 & 0 \\ 0 & 16 \end{bmatrix}$, then detA = ?

- (a) 4
- (b) 8

- (c) 2
- (d) 16

68. If A is an $n \times n$ matrix over a field F and $c \in F$, then which of the following is false?

- (a) $det(A^t) = det(A)$ (b) $det(cA) = c^n det(A)$ (c) $adj(A^t) = adj(A)$ (d) $adj(A^t)A^t = det(A)I$ 69. If $A = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix}$ is a matrix over the field F, then (a) detA = 1
 - (b) detA = abc
 - (c) detA = -abc
 - (d) det A = 0
- 70. If A and B are invertible $n \times n$ matrices over a field F, then which of the following is always true?
 - (a) A+B is invertible
 - (b) $A^{-1} + B^{-1}$ is invertible
 - (c) AB is invertible
 - (d) A-B is invertible

71. An $n \times n$ matrix A over the polynomial ring F[x] is invertible over F[x] if and only if

- (a) det A = 0
- (b) detA is a non-zero polynomial in F[x].
- (c) detA is a non-zero polynomial of degree less than or equal to 1 in F[x].
- (d) detA is a non-zero scalar polynomial in F[x].
- 72. If A is an $n \times n$ matrix over a field F with a left inverse, then
 - (a) right inverse of A may or may not exists.
 - (b) right inverse of A exists but A is not invertible.
 - (c) right inverse of A exists but both inverses may differ.
 - (d) right inverse of A exists and A is invertible.
- 73. A is an $n \times n$ matrix over a field F, then the classical adjoint of A, adj A is defined by

- (a) $(adjA)_{ij} = (-1)^{i+j}detA(i|j)$
- (b) $(adjA)_{ij} = (-1)^{i+j} detA(j|i)$
- (c) $(adjA)_{ij} = (-1)^{i+j}detA(i|i)$
- (d) $(adjA)_{ij} = (-1)^{i+j}detA(j|j)$

74. Let S denotes the set of all primes p such that the matrix $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & -1 \\ -2 & 0 & 2 \end{bmatrix}$ is invertible

when considered as a matrix in Z_p . Then

- (a) S is empty
- (b) S contains all prime numbers greater than 10
- (c) S contains all odd prime numbers
- (d) S contains all prime numbers less than 10

75.	The determinant of the matrix	[2	5	2	5]	is
		2	2	0	3	
		0	0	2	1	
		0	0	8	6	

- (a) 36
- (b) -24
- (c) 12
- (d) 0

76. The determinant function on the set of $n \times n$ matrices over a field F is not

- (a) linear
- (b) n-linear
- (c) alternating
- (d) unique

77. If A is an $n \times n$ matrix over a field F, then the matrix A is invertible if and only if

- (a) is a non-zero matrix
- (b) A is symmetric
- (c) A is non-singular
- (d) A=I

78. If A is a square matrix of order 3 and det A = 5, then det(3A) is

(a) 135

- (b) 405
- (c) 125
- (d) 15

79. If A is any $n \times n$ matrix over a field F, then AA^t is

- (a) Identity matrix
- (b) Symmetric matrix
- (c) Skew-symmetric matrix
- (d) Zero matrix
- 80. If D is an alternating function on the set of $n \times n$ matrices over a field F and A' is the matrix obtained by interchanging any two rows of A, then D(A') is
 - (a) D(A)
 - (b) 0
 - (c) -D(A)
 - (d) 1

81. The characteristic polynomial of the matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is

- (a) $x^2 + 1$
- (b) $x^2 x + 1$
- (c) $1 x^2$
- (d) $x^2 + x + 1$
- 82. Which of the following is the characteristic polynomial of an $n \times n$ matrix A.
 - (a) f(x) = det(xI A)
 - (b) $f(x) = det(xI A^2)$
 - (c) f(x) = det(xI + A)
 - (d) f(x) = det(I xA)

83. The characteristic values of the matrix $\begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix}$ are

- (a) 1, 2
- (b) 1, -2
- (c) -1, 2
- (d) -1, -2

- 84. The characteristic values of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ -2 & 3 & 0 \\ -1 & 0 & 2 \end{bmatrix}$ are
 - (a) -2, 3, 2
 - (b) 0, 3, 1
 - (c) -1, 0, 2
 - (d) 1, 3, 2

85. If c is the characteristic value of an $n \times n$ matrix A, then

- (a) det(A) = c
- (b) det(cI A) = 0
- (c) det(A+I) = c
- (d) det(A+cI) = 0
- 86. Let T be a linear operator on the finite dimensional vector space V. T is diagonalizable if there is a basis for V in which each vector is a of T.
 - (a) Characteristic Value
 - (b) Characteristic Vector
 - (c) Singular Value
 - (d) Singular Vector

87. The characteristic polynomial of the matrix $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ is

- (a) f(x) = x(x-1)
- (b) f(x) = (x+1)(x-1)
- (c) f(x) = x(x+1)
- (d) f(x) = (x-1)(x-2)
- 88. Let T be a linear operator on the finite dimensional vector space V over the field F. The unique monic generator of the ideal of polynomials over F which annihilate T is called
 - (a) Minimal Polynomial.
 - (b) Symmetric Polynomial.
 - (c) Singular Polynomial.
 - (d) Characteristic Polynomial.

- 89. Let T be a linear operator on the finite dimensional vector space V over the field F. If f is the characteristic polynomial for T, then f(T) is
 - (a) dimV
 - (b) 1
 - (c) -1
 - (d) 0
- 90. Choose the correct statement
 - (a) Characteristic polynomial divides the minimal polynomial.
 - (b) Characteristic polynomial and minimal polynomial has the same degree.
 - (c) Minimal polynomial divides the characteristic polynomial.
 - (d) The sum of minimal and characteristic polynomial is the zero polynomial.
- 91. Let T be a linear operator on \mathbb{R}^2 which is represented in the standard ordered basis by a matrix $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Then
 - (a) the only subspace of \mathbb{R}^2 which is invariant under T is \mathbb{R}^2 .
 - (b) the only subspace of \mathbb{R}^2 which is invariant under T is the zero subspace.
 - (c) the only subspaces of \mathbb{R}^2 which are invariant under T are \mathbb{R}^2 and the zero subspace.
 - (d) there are three subspaces of \mathbb{R}^2 which are invariant under T.
- 92. Let T be a linear operator on a vector space V. A subspace W is invariant under T if
 - (a) $T(W) = \phi$
 - (b) T(W) = W
 - (c) $T(W) \subset W$
 - (d) $T(W) \cup W = \{0\}$
- 93. Suppose that E is a projection on a vector space V. Let R be the range of E and let N be the null space of E. Then
 - (a) $V = R \cup N$
 - (b) $V = R \cap N$
 - (c) $R \oplus N = \phi$
 - (d) $V = R \oplus N$
- 94. A linear operator E on a vector space V is called a projection if
 - (a) $E^2 = -E$

- (b) $E^2 = E$
- (c) $E^2 = I$
- (d) $E^2 = -I$

95. Let $P : \mathbb{R}^2 \to \mathbb{R}^2$ be defined as P(x, y) = (x, 0). Then

- (a) P is a projection
- (b) P is not a projection
- (c) $P^2 = -P$
- (d) $P^2 = I$
- 96. Let V be a finite dimensional vector space over the field F and let $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ be any basis for V. If W_i is the one dimensional subspace spanned by α_i , then
 - (a) $V = W_1 \oplus W_2 \oplus \cdots \oplus W_n$
 - (b) $W_1 \oplus W_2 \oplus \cdots \oplus W_n = \phi$
 - (c) $V = W_1 \cup W_2 \cup \cdots \cup W_n$
 - (d) $V = W_1 \cap W_2 \cap \cdots \cap W_n$
- 97. Let n be a positive integer and F a subfield of the complex numbers and let V be the space of all $n \times n$ matrices over F. Let W_1 be the space of all symmetric matrices and W_2 the space of all skew symmetric matrices. Then
 - (a) $V = W_1 \cap W_2$
 - (b) $V = W_1 \oplus W_2$
 - (c) $V = W_1 \cup W_2$
 - (d) $W_1 \oplus W_2 = \phi$
- 98. Suppose that E is a projection. Let R be the range of E and let N be the null space of E. The unique expression for $\alpha \in V$ as a sum of vectors in R and N is
 - (a) $\alpha = E\alpha + (\alpha E\alpha)$
 - (b) $\alpha = E\alpha + (\alpha + E\alpha)$
 - (c) $\alpha = E\alpha + (E\alpha \alpha)$
 - (d) $\alpha = E\alpha + (-\alpha E\alpha)$
- 99. Let T be any linear operator on a finite dimensional space V. Let c_1, \ldots, c_k be the distinct characteristic values of T, and let let W_i be the space of characteristic vectors associated with the characteristic value c_i . Suppose that T is diagonlizable then
 - (a) $V = W_1 \cap \cdots \cap W_k$
 - (b) $V = W_1 \cup \cdots \cup W_k$

- (c) $V = W_1 \oplus \cdots \oplus W_k$
- (d) $W_1 \cup \cdots \cup W_k = \phi$
- 100. Consider the following statements
 - 1. Similar matrices have the same characteristic polynomial.

2. Characteristic values of a diagonal matrix are diagonal entries. Which of the statements given above is/are correct?

- (a) 1 only
- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2

101. Find the matrix with two distinct characteristic values

(a)
$$A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} -1 & 0 \\ 2 & -1 \end{bmatrix}$$

(c)
$$A = \begin{bmatrix} 2 & -2 \\ 0 & 2 \end{bmatrix}$$

(d)
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$

102. The characteristic polynomial of the matrix $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$ is

- (a) $f(x) = x^2 2x + 1$ (b) $f(x) = x^2 + 2x + 1$ (c) $f(x) = x^2 + 2x - 1$
- (d) $f(x) = x^2 2x 1$

103. Let A be the 2 × 2 matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Choose the correct statement

- (a) 1 and -1 are the two characteristic values of A.
- (b) A has two characteristic values in \mathbb{R} .
- (c) A has no characteristic values in \mathbb{C} .
- (d) A has two characteristic values in \mathbb{C} .

104. Let
$$A = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$$
. Then

- (a) A has only real characteristic values
- (b) A has no real characteristic values
- (c) A is skew-symmetric
- (d) Sum of the characteristic values of A is 8

105. Let
$$A = \begin{bmatrix} 1 & -2 \\ 0 & -1 \end{bmatrix}$$
. Find the sum of the eigen values

- (a) 1
- (b) -2
- (c) -1
- (d) 0