M.Sc. Mathematics

Sem 1 Abstract Algebra

Multiple Choice Questions

1.		What is the order of the group	$Z_3 \times$	Z_4
	A.	11	C.	12
	В.	15	D.	16
2.		What is the order of element (2	2,3)	in the group $Z_6 \times Z_{15}$
	A.	15	C.	19
	В.	16	D.	12
3.		Are the groups and $Z_2 \times Z_{12}$ and	Z_4	${^{<}}Z_6$ isomorphic
	A.	Yes	В.	No
4.		Find the order of the factor gro	up Z	$Z_4 \times Z_2 / < (2,1) >$
	A.	6	C.	4
	В.	8	D.	3
5.		Order of the element (0,0) in t	he g	group $Z_2 \times Z_4$
	A.	1	C.	3
	B.	2	D.	4
6.		Order of the element (3,10,9) is	n the	e group $Z_4 \times Z_{12} \times Z_{15}$
	A.	50	C.	70
	В.	60	D.	80
7.		Order of the element 5+<4> in	Z_{12}	/<4>
	A.	6	C.	8
	B.	4	D.	10
8.		Find the order of the Factor gro	oup	Z ₆ /<3>
	A.	2	C.	4
	B.	3	D.	6
9.		Find the order of the Factor gro	oup	$(Z_{12} \times Z_{18}) / < (4,3) >$
	A.	36	C.	30
	B.	12	D.	18

10.	Find the order of the element 26+<12> in the Factor group Z_{60} /<12>						
A.	8 C	·.	6				
В.	10 D).	12				
11.	Number of all proper nontrivial s	ub	groups of $Z_2 \times Z_2 \times Z_2$				
A.	3 C		6				
В.	5 D).	7				
12.	Find all proper non trivial subgro	up	os of $Z_2 \times Z_2$				
A.	$\{(0,0),(1,0)\}\ \{(0,0),(0,1)\}\ \{(0,0),(0,1)\}$	(1,	.1)}				
В.	{(0,0),(1,0)}						
C.	$\{(0,0),(1,0)\}\ \{(0,0),(0,1)\}$						
D.	$\{(0,0),(1,0)\}\ \{(0,0),(1,1)\}$						
13.	How many abelian groups (up to	isc	omorphism) are there of order 24				
A.	1 C		5				
В.	3 D).	7				
14.	Find all abelian groups of order 8	up	to isomorphism				
A.	Z_8	C.	$Z_4 \times Z_2$				
В.	$Z_2 \times Z_4$	D.	$Z_2 \times Z_2 \times Z_2$				
15.	Find the order of the torsion subgroup of $Z_4 \times Z \times Z_3$						
A.	4	C.	12				
В.	3	D.	16				
16.	Find the order of the torsion subgroup of $Z_{12} \times Z \times Z_{12}$						
A.	12	C.	24				
В.	144	D.	132				
17.	How many subgroups of $Z_5 \times Z_6$ is	is	omorphic to $Z_5{ imes}Z_6$				
A.	1	C.	3				
В.	2	D.	4				
18. Find the order of the factor group ($Z_{11} \times Z_{15}$)/<(1,1)>							
A.	5	C.	1				
B.	4	D.	3				
19.	Find the torsion subgroup of the r	mu	lltiplicative group \mathbb{R}^* of the non zero real numbers				
A.	{1,0}	C.	{-1,1}				
B.	{0,1}	D.	{-1,0}				

20.		Find the maximum possible order for	or some element o	of $Z_4 \times Z_{18} \times Z_{15}$						
	A.	180 C.	188							
	B.	186 D.	184							
21.		The Klein 4- group is isomorphic to	The Klein 4- group is isomorphic to which group							
	A.	$Z_2 \times Z_4$ C.	$Z_2 \times Z_6$							
	B.	$Z_2 \times Z_2$ D.	$Z_4 \times Z_2$							
22.		Find all abelian groups of order 16	up to isomorphis	m						
	A.	$Z_2 \times Z_8$ C.	$Z_4 \times Z_4$							
	B.	$Z_2 \times Z_6$ D.	$Z_3 \times Z_6$							
23.		Find the order of the given factor gr	coup $(Z_3 \times Z_5)/(\{$	0 }× Z_5)						
	A.	5 C.	7							
	B.	2 D.	3							
24.		Find the order of the given factor gr	$\text{roup } (Z_2 \times Z_4) / < ($	1,1)>						
	A.	8 C.	2							
	B.	4 D.	6							
25.		Find the order of the element (8,10) in of the direct product $Z_{12} \times Z_{18}$								
	A.	12 C.	6							
	B.	3 D.	9							
26.		$(\mathbb{Z}/6\mathbb{Z})/(\mathbb{Z}/2\mathbb{Z})$ is								
	A.	$\mathbb{Z}_6/\langle 2 \rangle$ C.	$\mathbb{Z}/2\mathbb{Z}$							
	B.	\mathbb{Z}_2 D.	All the above							
27.		If $\varphi: \mathbb{Z}_{12} \to \mathbb{Z}_3$ be a homomorphism such that $\varphi(1) = 2$. Then the Kernel of φ is								
	A.	0, 3, 6, 9 C.	0, 2, 4, 6, 8, 10							
	B.	0,6 D.	None of the abov	e						
28.		If $\varphi: \mathbb{Z}_{18} \to \mathbb{Z}_{12}$ be a homomorphism	n such that $arphi(1)$ =	= 10. Then the group $arphi[\mathbb{Z}_{18}]$ is						
	A.	0, 3, 6, 9 C.	0, 2, 4, 6, 8, 10							
	B.	0,6 D.	None of the abov	e						
29.		In \mathbb{Z}_{24} , let $H = \langle 4 \rangle$ and $N = \langle 6 \rangle$. Th	en, the elements i	n <i>HN</i> are						
	A.	{0,2,4,6,8,10,12,14,16,18,20,22}C.	{0,8,16}							
	B.	{0,4,8,12,16,20} D.	None of the abov	e						
30.		In \mathbb{Z}_{48} , let $H = \langle 4 \rangle$ and $N = \langle 6 \rangle$. The	nen, the elements	in <i>H∩N</i> are						
	A.	{0}	C.	{0,6,12,18,24,30,36,42}						
	B.	{0,12,24}	D.	{0,12,24,36}						

31.		In the group $G = \mathbb{Z}_{36}$, let $H =$	(9) a	and $K = \langle 18 \rangle$. Then, the number of cosets			
		in $(G/K)/(H/K)$ are					
	A.	12	C.	9			
	B.	6	D.	3			
32.	. The order of Sylow 3-subgroup of a group of order 12 is						
	A.	3	C.	12			
	B.	4	D.	None of the above			
33.		The number of Sylow 2 subgro	ups	of a group of order 24 is			
	A.	1 or 3	C.	All of the above			
	B.	2 or 6	D.	None of the above			
34.		Which among the following is	а р-д	group			
	A.	\mathbb{Z}_{36}	C.	\mathbb{Z}_{15}			
	B.	\mathbb{Z}_{16}	D.	\mathbb{Z}_{100}			
35.		Sylow 3-subgroups of S_6 are					
	A.	⟨(1,2,3)⟩	C.	⟨(1,3,4)⟩			
	B.	⟨(1,2,4)⟩	D.	All the above			
36.		Which of the following groups	is no	ot solvable?			
	A.	S_3	C.	S_5			
	B.	\mathbb{Z}	D.	Z_9			
37.		Let <i>G</i> be a group of order 15. T	hen,	, the number of Sylow subgroup of G of order 3	S		
	A.	1	C.	2			
	B.	0	D.	3			
38.		A group of orderis simp	ole				
	A.	13	C.	45			
	B.	48	D.	36			
39.		Statement 1: Every group of or	der	p^2 is abelian			
		Statement 2: Every group of or	der	p^r for $r > 1$ is simple, where p is a prime			
	A.	Both 1 and 2 are true		C. 1 is false, 2 is true			
	B.	1 is true, 2 is false		D. Both 1 and 2 are false			
40.		The center of a group <i>G</i> is nont	trivia	al if G has order			
	A.	9	C.	25			
	B.	8	D.	All the above			

A Sylow-p-subgroup of a finite group *G* is 41. A. abelian B. is unique if and only if it is normal in *G* C. is cyclic D. None of the above 42. Statement 1: Any two Sylow *p*-subgroups of a finite group are conjugates Statement 2: Every *p*-subgroup of every finite group is a Sylow p-subgroup A. 1 is true, 2 is false C. Both are true B. 2 is true, 1 is false D. Both are false The statement "If H is a subgroup of G and N is a normal subgroup of G, 43. then $(HN)/N \simeq H/H \cap N$ is A. Second isomorphism theorem C. Second Sylow theorem B. Third isomorphism theorem D. Third Sylow theorem 44. If *N* is a normal subgroup of *G* and *H* is any subgroup of *G*, then A. $H \lor N = HN \neq NH$ C. $H \lor N \neq HN \neq NH$ D. $H \lor N = HN = NH$ B. $H \lor N \neq HN = NH$ If G is a group of order p^n , X is a finite G-set, $X_G = \{x \in X \mid gx = xg \text{ for all } g \in G\}$ 45. and $Gx = \{gx \mid g \in G\}$, then A. $|X| \equiv |Gx| \pmod{p}$, B. $|X| \equiv |X_G| \pmod{p}$, C. $|X| = r + \sum_{i=1}^{r} |Gx_i|$, where r is the no. of orbits in X under GD. $|X| = |X_G| + \sum_{i=1}^r |Gx_i|$ If *G* is a group of order 75, then 46. A. *G* has subgroups of order 3 and 5 B. *G* has subgroup of order 3 but no subgroup of order 5 C. *G* has subgroup of order 5 but no subgroup of order 3 D. *G* need not have subgroups of order 3 and 5 47. Let *H* be a *p*-subgroup of a finite group *G*. Statement 1: $(N[H]: H) \neq (G: H) \pmod{p}$

C. 1 is false and 2 is true

D. Both 1 and 2 are false

Statement 2: If p divides (G: H), then $N[H] \neq H$

A. Both 1 and 2 are true

B. 1 is true and 2 is false

		then						
	A.	G is equal to HK			C.	Both of the above		
	B.	<i>G</i> is isomorphic to $H \times K$			D.	None of the above		
49.		Decomposition of D_3 into conjug	gate	e classes is				
	Α.	$\{\rho_0\}, \{\rho_1,\rho_2\}, \{\mu_1\}, \{\mu_2,\mu_3\}$			C.	$\{\rho_0\}, \{\rho_1\}, \{\rho_2\}, \{\mu_1\}, \{\mu_2\}, \{\mu_3\}$		
	B.	$\{\rho_0,\rho_1,\rho_2\},\{\mu_1,\mu_2,\mu_3\}$			D.	$\{\rho_0\},\{\rho_1,\rho_2\},\{\mu_1,\mu_2,\mu_3\}$		
50.		True statement among the follo	win	ig is				
A. Every solvable group is of prime power order								
	B.	Every group of prime power ord	der	is solvable				
	C.	Every solvable group is cyclic						
	D.	Every solvable group is abelian						
51.		Find the number of elements les	ss tl	nan and relativ	ely	prime to 10.		
	A.	3	C.	4				
	B.	5	D.	8				
52. Find the number of elements less than and relatively prime to 12.						prime to 12.		
	A.	3	C.	4				
	B.	5	D.	8				
53.		Which of the following is a Mersenne prime?						
	A.	3	C.	4				
	B.	5	D.	8				
54.		Which of the following congruence satisfies the Little Theorem of Fermat?						
	A.	$8^{12} \equiv 1 \bmod 12$	C.	$8^{12} \equiv -1 mod$	d 13	}		
	B.	$8^{13} \equiv 1 \bmod 13$	D.	$8^{12} \equiv 1 mod$	13			
55.		The solution of the linear congr	uen	$ce 2x \equiv 5 mod$	<i>l</i> 7 i	S		
	A.	6	C.	4				
	B.	7	D.	No Solution				
56.		The solution of the linear congr	uen	$ce 12x \equiv 27 n$	nod	18 is		
	A.	6	C.	No Solution				
	B.	7	D.	5				
57.		Which of the following is an exa	mp	le of an Integra	al Do	omain?		
	A.	Z_4	C.	Z_6				
	В.	Z_7	D.	Z_{10}				
				Page 6 of 11				

If *G* is a group containing normal subgroups *H* and *K* such that $H \cap K = \{e\}$ and $H \lor K = G$,

48.

	A.	Q is the field of quotients of Z			C.	R is the field of quotients of R
	В.	\boldsymbol{R} is the field of quotients of \boldsymbol{Z}			D.	Q is the field of quotients of Q
59.		Which of the following is not a	field	l under additio	n ar	nd multiplication?
	A.	Z	C.	С		
	B.	R	D.	Q		
60.		Every field of quotients of Z is i	som	orphic to		
	A.	Q	C.	R		
	B.	Z	D.	С		
61		Consider the evaluation homon	norp	ohism φ_2 : $F[x]$	$\rightarrow I$	E where $F = E = C$. Then $\varphi_2(x^2 + 3)$ is
	A.	2	C.	1		
	B.	3	D.	7		
62.		Consider the evaluation homon	norp	ohism φ_i : $F[x]$	$\rightarrow E$	E where $F = E = C$.
	The	en $\varphi_i(2x^3 - x^2 + 3x + 2)$ is				
	A.	i	C.	5i+3		
	B.	i+3	D.	4		
63.		Consider the evaluation homon	norp	ohism φ_2 : $F[x]$	$\rightarrow I$	E where F = Q, E = R.
	The	en $\varphi_2(x^2 + x - 6)$ is				
	A.	2	C.	0		
	B.	6	D.	-2		
64.		Consider the evaluation homon	norp	ohism φ_3 : $F[x]$	$\rightarrow l$	E where $F = E = Z_7$.
	The	en $\varphi_3[(x^4+2x)(x^3-3x^2+3)]$	is			
	A.	8	C.	6		
	B.	4	D.	2		
65.		Zeros of the polynomial $x^2 + 1$	in Z_2	2		
	A.	0	C.	0 and 1		
	B.	1	D.	2		
66.		Zeros of the polynomial $x^3 + 2x^3$	x +	$2 \text{ in} Z_7$		
	A.	5	C.	2and 6		
	B.	2 and 3	D.	6		
67.		Zeros of the polynomial $x^5 + 3$:	$x^3 +$	$-x^2 + 2x \text{ in } Z_5.$		
	A.	1	C.	0 and 4		
	B.	3	D.	2 and 4		
				Page 7 of 11		

Which of the following is not true?

58.

68.		If D is an integral domain, then $D[x]$ is						
	A.	An integral domain			C.	A finite field		
	B.	A field			D.	Not an integral domain		
69.		If F is a field, then $F[x]$ is						
	A.	An integral domain			C.	A finite field		
	B.	A field			D.	Not an integral domain		
70.		Find the polynomial which is in	red	ucible over Q				
	A.	$x^2 + 3$	C.	x^4				
	B.	$x^2 + 5x + 4$	D.	$x^2 - 1$				
71.		Find the polynomial which is re	educ	cible overQ				
	A.	$x^2 + 3$	C.	$x^4 - 2$				
	B.	$x^2 + 5x$	D.	$x^2 + 1$				
72.		The polynomial $x^2 - 2$ is irred	ucib	le over				
	A.	Q	C.	С				
	B.	R	D.	Z_2				
73.		The polynomial $x^2 - 2$ is reduced	ible	over				
	A.	Q	C.	Z				
	В.	R	D.	Z_2				
74.		The polynomial $x^2 + 1$ is irred	ucib	le over				
	A.	Q	C.	Z				
	B.	R	D.	Z_2				
75.		Which of the following is not tr	ue.					
	A.	x - 2 is irreducible over Q			C.	$x^2 - 3$ is irreducible over Q		
	В.	3x - 6 is irreducible over Q			D.	$x^2 - 1$ is irreducible over Q		
76.		A homomorphism of A into itself is called						
	A.	Automorphism			C.	Isomorphism		
	B.	Endomorphism			D.	Monomorphism		
77.		Wedderburn's theorem states that						
	A.	Every non empty set of positive integers contains a smallest member						
	B.	Every group is isomorphic to a	per	mutation grou	p			
	C.	For any finite group G, the orde	er of	subgroup H d	ivid	es the order of a group G		
	D.	Every finite division ring is a field						

78.		A map Ø of a ring R into a ring	R'w	with $\emptyset(a+b) = \emptyset(a) + \emptyset(b)$ and $\emptyset(ab) = \emptyset(a)\emptyset(b)$ is			
		called					
	A.	Homomorphism	C.	Endomorphism			
	B.	Isomorphism	D.	Automorphism			
79.		A ring homomorphism $\emptyset: R \rightarrow$	R' is	s one-one if and only if			
	A.	$Ker(\emptyset) = \{1\}$	C.	$Ker(\emptyset) = \{0\}$			
	B.	$Ker(\emptyset) = \{1,2\}$	D.	Range $(\emptyset) = \{0\}$			
80.		Let R be a commutative ring w	ith u	unity of prime characteristic p. Then the map $\emptyset_p : R \to R$			
		defined by $\phi_p(a) = a^p$ is a homomorphism called					
	A.	Projection homomorphism		C. Ring Homomorphism			
	В.	Group Homomorphism		D. Frobenius Homomorphism			
81.		An element 'a' of a ring R with	$a^n =$	$= 0$ for some $n \in \mathbb{Z}^+$ is called			
	A.	Nilpotent	C.	Idempotent			
	B.	Orthogonal	D.	Diagonal			
82.		An additive subgroup N of a ri	ng R	such that $aN \subseteq N$ and $Nb \subseteq N$ for every $a,b \in R$ is			
		called					
	A.	Factor ring	C.	Ideal			
	B.	Prime ideal	D.	Prime field			
83.		Quaternion is a group of order	·				
	A.	8	C.	7			
	B.	10	D.	6			
84.		Which of the following is true.					
	A.	$M_n(F)$ has no divisors of zero	for a	any n and any field F			
	В.	Every non zero element of M_2	(Z_2) i	is a unit			
	C.	The group ring RG of an abelia	n gro	oup G is a commutative ring for any commutative ring R			
		with unity					
	D.	No subring of Quarternions is	a fiel	ld			
85.		The quaternions of Hamilton a	ıre				
	A.	Commutative ring		C. Field			

D. Skew field

B. Integral domain

86.		Let SK_1, K_2, \dots, K_n be rings. For	eaci	i i, the map π_i :	κ_1	$\times R_2 \times \times R_n \to R_i$ defined				
		by $\pi_i(r_1, r_2, \dots, r_n) = r_i$ is a hom	omo	orphism called						
	A.	Projection homomorphism			C.	Group Homomorphism				
	B.	Frobenius Homomorphism			D.	Ring Homomorphism				
87.		Let a map $\emptyset: R \to R'$ be a homorous	mor	phism of rings	. Th	e subring $\emptyset^{-1}(0') = \{r \in R/\emptyset(r) = 0'\}$				
		is called								
	A.	Range (Ø)	C.	Factor ring						
	B.	Kernel(Ø)	D.	Inverse of \emptyset						
88.		Which of the following is true?								
	A.	An isomorphism of a ring R with a ring R' is a homomorphism $\emptyset: R \to R'$ such that								
		$Ker(\emptyset) = \{0\}$								
	B.	The Kernel of a homomorphism	ı Ø ı	mapping a ring	Ri	nto a ring R' is $\{r \in R/\emptyset(r) = 0'\}$				
	C.	An ideal N of a ring R is an additive subgroup of $<$ R , $+>$ such that for all $r \in R$, $n \in N$; $rn \in R$								
		N and $nr \notin N$								
	D.	A ring homomorphism $\emptyset: R \to R$	R' ca	arries ideals of	R ir	nto ideals of R'				
89.		The nil radical of the ring \mathbb{Z}_{12} where nilradical is the collection of all nilpotent elements in a								
	commutative ring R, which is an ideal is									
	A.	{0,3}	C.	{0,9}						
	B.	{0,4}	D.	{0,6}						
90.		Which of the following is false?								
	A.	Every maximal ideal of every commutative ring with unity is a prime ideal								
	B.	Q is its own prime subfield								
	C.	Every field contains a subfield isomorphic to a prime field.								
	D.	The prime subfield of C is R.								
91.		Every ideal of the ring Z is of th	e fo	rm						
	A.	Z+n	C.	Z/n						
	B.	Z-n	D.	nZ						
92.		Which of the following is a prin	ne fi	eld?						
	A.	Z	C.	Q^c						
	B.	R	D.	Z_p						
93.		An ideal $N \neq R$ in a commutativ	e rir	ng R is a prime	ide	al if for $a,b \in R$				
	A.	$ab \in N \implies a \in N \ and \ b \in N$			C.	$ab \in N \implies a \in N \text{ or } b \in N$				
	B.	$ab \in N \implies a \notin N \ and \ b \notin N$			D.	$ab \in N \implies a \notin N \ and \ b \in N$				

94.		Which of the following is false?								
	A.	An ideal M of R is maximal if an	d or	nly if R/M is a field, for a commutative ring R						
	B.	An ideal N of R is prime if and o	nly	if R/N is an integral domain, for a commutative ring R.						
	C.	Every maximal ideal of R need not be a prime ideal for a commutative ring R								
	D.	Every maximal ideal of R is a pr	ime	ideal for a commutative ring R						
95.		For the ring RG defined as: RG to be the set of all formal sums; ie. $\sum a_i g_i$ for all $a_i \in R$, $g_i \in R$								
		Under the Operation ($\sum_{i \in I} a_i g_i$) +	$(\sum_{i\in I} b_i g_i) = \sum_{i\in I} (\sum_{g_j g_k = g_i} a_j b_k) g_i$ is a group ring of G						
		over F If F is a field, then FG is		of G over F						
	A.	Group ring	C.	Group field						
	B.	Ring groups	D.	Field Group						
96.		Let H be a subring of the ring R. Multiplication of additive cosets defined								
		by $(a + H)(b + H) = ab + H$ is well defined if and only if								
	A.	$ah \in H$ and $hb \in H$, $\forall a, b \in R$ and $h \in H$								
	B.	$ah \in H$ and $hb \notin H$, $\forall a, b \in R$ and $h \in H$								
	C.	Neither ah nor hb belongs to H,	∀a,	$b \in R$ and $h \in H$						
	D.	$ah \notin H$ and $hb \in H, \forall a, b \in R$ and	d h	€H						
97.		Let N be an ideal of a ring R. The additive cosets of N forms a ring R/N with the binary								
		operation $(a + N)(b + N) = (a + N)(a + N)$	+ k	(p) + N. Then the ring R/N is the						
	A.	Group ring	C.	Group field						
	B.	Ring group	D.	Field group						
98.		If R is a ring with unity and N is	an	ideal of R containing a unit, then						
	A.	$N \subset R$	C.	$N \neq R$						
	B.	N = R	D.	$N \supset R$						
99.		Z_n is a field if and only if								
	A.	n is prime	C.	n=0						
	B.	$n \in N$	D.	$n \in Z$						
100).	Let p(x) be an irreducible polyr	om	ial in F[x]. If p(x) divides r(x)s(x) for $r(x)$, $s(x) \in F[x]$						
		then								
	A.	neither $p(x) r(x)$ nor $p(x) s(x)$)	C. $p(x) r(x)$ and $p(x) s(x)$						
	B.	either $p(x) r(x)$ or $p(x) s(x)$		D. All of the above are true						