SECOND SEMESTER MSc MATHEMATICS

ADVANCED TOPOLOGY

OBJECTIVE QUESTIONS

1. If every open cover of a topological space has a finite subcover then the space is

(c) Compact
2. Every map from a compact space into a T_2 space is
(a) Closed
3. A continuous bijection from a compact space onto a Hausdorff space is
(c) Homeomorphism
4. Every continuous one-to-one function from a compact space into a Hausdorff space is
(a) Embedding
5. Which of the following is not true for a compact hausdorff space
(d) Completely regular
6. If a space is regular and Lindeloff then it is
(a) Normal
7. If every open cover of a topological space has a countable sub cover then the space is
(a) Lindeloff
8. In a discrete space, every continuous real valued function is
(b) Constant
9. A subset of R with usual topology is closed and bounded then the subset is
(d) Compact
10. If a space X is regular and second countable then X is
(a) Normal
11. A T_4 Space is
(a) Normal and $T_{ m 1}$
12. A T3 space is
(c) Regular and T_1

13. If a space X has the property that for every two mutually disjoint closed subsets A and B of X,

there exist a continuous function $f: X \to [0 \ 1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$ then X is

(a) Normal

14. Which of the following is related to the statement given below.

If a space X has the property that for every two mutually disjoint closed subsets A and B of X, there exist a continuous function $f: X \to [0 \ 1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$ then X is normal

- (a) Urysohn Lemma
- 15. Which of the following is not true
 - (d) $T_4 \Longrightarrow$ Second countable
- 16. Let $A \subset X$ and $f: A \to Y$ then the function $F: X \to Y$ is the extension of f then which of the following is true
 - (a) $F(a) = f(a) \forall a \in A$
- 17. Let $A \subset X$ and $f: A \to Y$ also F and G from X to R be two extensions of f then which of the following is true
 - (a) $F(a) = G(a), \forall a \in \bar{A}$
- 18. Let A be a closed subset of the normal space X and suppose $f: A \to [-1 \ 1]$ is a continuous function then there exist a continuous function $F: X \to [-1 \ 1]$ such that $F(x) = f(x), \forall x \in A$ Which of the following is related to the above statement .
 - (b)Tietze Extension theorem
- 19. Let A be a closed subset of the normal space X and suppose $f: A \to (-1 \ 1)$ is a continuous function then which of the following is true
 - (a) There exist a continuous function $F: X \to (-1 \ 1)$ such that $F(x) = f(x) \forall x \in A$
- 20. Which of the following statements is true
 - (1) Every regular Lindeloff space is normal
 - (2) Every regular Lindeloff space is second countable
 - (3) Every regular second countable space is normal
 - (4) Every regular second countable space is completely regular
 - (b) 1 and 3
- 21. Which of the following statements are true
 - (1) All T_4 spaces are normal
 - (2) All T_4 spaces are regular
 - (3)All T_4 spaces are completely regular
 - (4) All T_4 spaces are Hausdorff
 - (d) All of the above
- 22. The range of a map from a compact space into a Hausdorff space is

- (c) Quotient space of the domain
- 23. X is a Hausdorff space and Y is a compact subset of X then Y is
 - (b) Closed
- 24. A topological space has the property that for every closed subset A of X, every continuous real valued function on A has a continuous extension to X, then X is
 - (d) Normal
- 25..Let $\{X_i: i \in I\}$ be an indexed family of sets then the cartesian product $\prod_{i \in I} X_i$ is defined as
 - (b) The set of all functions x from the index set I into $\bigcup_{i \in I} X_i$ such that $x(i) \in X_i$ for all $i \in I$.
- 26. Let $\{X_i : i \in I\}$ be an indexed family of sets and let $= \prod_{i \in I} X_i$. Let $J \in i$, then the j th projection function π_i is defined as .
 - (c) $\pi_i: X \to X_i$ defined by $\pi_i(x) = x(j)$ for $x \in X$.
- 27. Define a box in $X = \prod_{i \in I} X_i$
 - (c) A subset B of X of the form $\prod_{i \in I} B_i$ for $B_i \subset X_i, i \in I$.
- 28. Define a wall in $X = \prod_{i \in I} X_i$
- (b) A set of the form $\pi_i^{-1}(B_i)$ for some $j \in I$ and some $B_i \subset X_i$.
- 29. Which of the following is truem
 - b.. A subset of $X = \prod_{i \in I} X_i$ is a box iff it is the intersection of family of walls.
- 30. Which of the following is true
 - a. A subset of $X = \prod_{i \in I} X_i$ is a large box iff it is the intersection of finitely many walls.
- 31. For any sets Y, I and J which is true up to a set theoretice quivalence

(c).
$$(Y^I)^J = Y^{IXJ}$$

- 32. Which of the following is true
 - (c)The intersection of any family of boxes is a box.
- 33. Let $\{(X_i, \tau_i) : i \in I\}$ be an indexed collection of toplogical spaces and let $X = \prod_{i \in I} X_i$ and for each $i \in I$, π_i be the projection function. Then the product topology on X is
 - a. The smallest topology on *X* which makes each projection function continuous.
 - b. The topology on X which makes each projection function continuous.
 - c. The largest topology on X which makes each projection function continuous.
 - d. The strongest topology on *X* which makes each projection function continuous.

Answer (a)

34. A large box is

- a. A box $B = \prod_{i \in I} B_i$ where $B_i = X_i$, $\forall i \in I$.
- b. A box $B = \prod_{i \in I} B_i$ where $B_i \neq X_i$, except for some $i \in I$.
- c. A box $B = \prod_{i \in I} B_i$ where $B_i = X_i$, except for some finite $i \in I$
- d. A box $B = \prod_{i \in I} B_i$ where $B_i \neq X_i$, $\forall i \in I$ Answer (c)

35. A cube is

- a. $[0,1]^I$, where I is some set.
- b. [0,1]
- c. [a,b]X[c,d]
- d. $[0,1]^{[0,1]}$

Answer (a)

36. A Hilbert cube is

- a. $[0,1]^I$, where I is denumerable.
- b. $[0,1]^I$, where I is some set.
- c. $[0,1]^H$
- d. [0,1]

Answer (a)

37. Which of the following is true

- a. The projection function are continuous and open
- b. The projection function are continuous and closed
- c. The projection function are open and one to one
- d. The projection function are one to one and closedAnswer (a)

38 . Let τ be the product topology on the set $X = \prod_{i \in I} X_i$, where $\{(X_i, \tau_i) : i \in I\}$ is an indexed collection of topological spaces. Then standard sub base for the product topology τ is

- a. The family of all subsets of the form $\prod_{i \in I} V_i$ for $V_i \in \tau_i$, $i \in I$.
- b. The family of all subsets of the form $\pi_i(V_i)$ for $V_i \in \tau_i$, $i \in I$.
- c. The family of all subsets of the form ${\pi_i}^{-1}(V_i)$ for $V_i \in \tau_i, i \in I$.
- d. The family of all subsets of the form $\prod_{i \in I} V_i$.

Answer (c)

- 39 . Let τ be the product topology on the set $X = \prod_{i \in I} X_i$, where $\{(X_i, \tau_i) : i \in I\}$ is an indexed collection of topological spaces. Then standard base for the product topology τ is
 - a. The family of all walls all of whose sides are open in the respective spaces.
 - b. The family of all boxes all of whose sides are open in the respective spaces.
 - c. The family of all large boxes all of whose sides are open in the respective spaces.
 - d. The family of all boxes in X.

Answer (c)

- 40. If $\{(X_i, \tau_i): i \in I\}$ is an indexed family of spaces having a topological property, the topological product $\prod_{i \in I} X_i$ also has that property then that property is called a
 - a. Productive property
 - b. Countably Productive property.
 - c. Finitely productive property
 - d. None of these

Answer (a)

- $41.T_0$, T_1 , and T_2 are
 - a. Productive properties
 - b. Countably Productive properties
 - c. Finitely productive properties
 - d. None of these

Answer (a)

- 42. Regularity and Complete regularity are
 - a. Productive properties
 - b. Countably Productive properties
 - c. Finitely productive properties
 - d. None of these

Answer (a)

- 43. Tychonoff property is a
 - a. Productive property
 - b. Countably productive property.
 - c. Finitely productive property

d. None of these.

Answer (a)

- 44. Connectedness is a
 - a. Productive property
 - b. Countably productive property
 - c. Finitely productive property
 - d. None of these

Answer (a)

- 45. Metrisability is a
 - a. Productive property
 - b. Countably productive property
 - c. Finitely productive property
 - d. None of these

Answer (b)

- 46. Cantor discontinuum is denoted by
 - a. Z_2
 - b. Y^I
 - c. Z_2^I
 - d. None of these

Answer (c)

- 47. Let S be a sub base for a topological space X. If or each $V \in S$ and for each $x \in V$, there exist a continuous function $f: X \to [0,1]$ such that f(x) = 0 and f(y) = 1 for all y not in V. Then
 - a. X is regular
 - b. *X* is Tychonoff
 - c. X is completely regular.
 - d. None of these

Answer (c)

48. For any cardinal numbers α , β , γ , which one is true

a.
$$(\alpha^{\beta})^{\gamma} = \alpha^{\beta+\gamma}$$

b.
$$(\alpha^{\beta})^{\gamma} = \alpha^{\beta\gamma}$$

c.
$$(\alpha^{\beta})^{\gamma} = \alpha^{\beta - \gamma}$$

d. None of these Answer (b) 49. Let $\{\alpha_i : i \in I\}$ be an indexed family of cardinal numbers. Then the cardinal number of the product set $\prod_{i \in I} X_i$, where for each $i \in I$, X_i is asset of cardinality α_i is a. $\sum_{i \in I} \alpha_i$ b. $\prod_{i \in I} \alpha_i$ c. $\bigcup_{i \in I} \alpha_i$ d. None of these Answer (b) 50. Consider the following two statements (1) Each coordinate space of a topological product is completely regular then the product space is completely regular (2) A product of topological spaces is completely regular then each coordinate space is completely regular Which of the following is true (a) 1 is true (b) 2 is true (c) Both are true (d) Both are false Answer (c) 51. Consider the following statements (1) A topological product of spaces is Tychonoff then each coordinate space is Tychonoff (2) Each coordinate space of a topological product is Tychonoff then the product space is not Tychonoff Which of the following is true (b) 2 is true (d) Both are false (a) 1 is true (c) Both are true Answer (a) 52. Choose the correct option from the following statements (1) A topological product of spaces is connected then each coordinate space is not connected (2)Each coordinate space of a topological product is connected then the product space is not connected (a) 1 is true (b) 2 is true (c) Both are true (d) Both are false Answer (d)

53. Let $\{Y_i: i \in I\}$ be an indexed family of sets. Suppose X is a set and let for each $i \in I$, $f_i: X \to Y_i$ be a function. Then the function $e: X \to \prod_{i \in I} Y_i$ defined by $e(x)(i) = f_i(x)$ for $i \in I$, $x \in X$ is know as

- (c) Evaluation function
- 54. An indexed family $\{f_i: i \in I\}$ of functions all defined on the same domain X is said to distinguish points if
- (a) For any distinct x, y in X there exist $j \in I$ such that $f_i(x) \neq f_i(y)$
- 55. The evaluation function of a family of function is one-to-one if and only
 - (b) That family distinguishes points
- 56. An indexed family of functions $\{f_i: X \to Y_i: i \in I\}$, where X, Y_i are topological spaces, is said to distinguish points from closed sets in X if
- (c) For any $x \in X$ and any closed subset C of X not containing x there exist $j \in I$ such that $f_i(x) \notin \overline{f_i(C)}$ in Y_i .
- 57. If the family of all continuous real valued functions on a topological space τ distinguish points from closed sets then which among the following is necessarily true?
 - $(b)\tau$ is completely regular
- 58. Let $\{f_i: X \to Y_i: i \in I\}$ be a family of functions which distinguishes points from closed sets in X. Then the corresponding evaluation function $e: X \to \prod_{i \in I} Y_i$ is
 - (a) Open when regarded as a function from X onto e(X)
- 59. Let $\{f_i: X \to Y_i: i \in I\}$ be a family of continuous functions. Then the corresponding evaluation map is an embedding of X into the product space $\prod_{i \in I} Y_i$ if the family
 - (c) Distinguish points and also distinguish points from closed sets
- 60. The embedding theorem states that
 - (b) A topological space is Tychonoff iff it is embeddable into a cube.
- 61. A space is embeddable in the Hilbert cube if and only if
- (c) It is second countable and T_3
- 62. A second countable space is metrisable if and only if
 - (d) It is T_3
- 63. Urysohn's metrisation theorem states that
- (d) A second countable space is metrisable iff it is T_3
- 64. Let X be a topological space. Then a family \mathcal{U} of subsets of X is said to be locally finite if for each $x \in X$, there exists a neighbourhood X of X which intersects
 - (a) Only finitely many members of $\mathcal U$
- 65. Let X be a topological space. Then a family $\mathcal V$ of subsets of X is said to be σ locally finite if it can be written as the union of
 - (b) Countably many subfamilies each of which is locally finite
- 66. A topological space is said to be countably compact if

- (b) Every countable open cover of it has a finite sub-cover
- 67. Which among the following statements is not correct?
 - (d) Countable compactness is not a weakly hereditary property.
- 68. For a T_1 countably compact topological space X which among the following is/are true?
 - (d) All the above
- 69. For a T_1 countably compact topological space X which among the following is/are true?
- (d) All the above
- 70. Let X be a T_1 topological space such that every sequence in X has a cluster point. Then which among the following is/are true?
 - (d)All the above
- 71. Consider the following two statements.
 - i. A continuous image of a countably compact space is countably compact.
 - ii. Countable compactness is a weakly hereditary property.

Then choose the correct option.

- (a) Both i. and ii. are true
- 72. Consider the following two statements.
 - i. Countable compactness is not a weakly hereditary property
 - ii. If in a T_1 countably compact topological space X every sequence has a cluster point then X is countably compact

Then choose the correct option.

- (c) (ii) Is true but (i) is false
- 73. Consider the following two statements.
 - i. A metric space is compact if and only if it is countably compact
 - ii. Every countably compact metric space is second countable

Then choose the correct option.

- (a) Both i. an ii. are true
- 74. Consider the following two statements.
 - i. Countable compactness is not a weakly hereditary property
 - ii. If in a T_1 topological space X every sequence has a cluster point then X is countably compact

Then choose the correct option.

(c) ii. is true but i. is false

- 75. Consider the following two statements.
 - i. A metric space is compact if and only if it is countably compact
 - ii. Every continuous real valued function on a countably compact space is bounded and attains its extrema

Then choose the correct option.

(a) Both i. and ii. are true

- 76. Consider the following two statements.
 - A space is sequentially compact if every sequence in it has a convergent subsequence
 - ii. A first countable, countably compact space need not be sequentially compact

Then choose the correct option.

- (b) i. is true but ii. is false
- 77. Let *X* be second countable space. Then choose the right option.
- (d) All the above
- 78.. Consider the following statements
- (i) A countably compact metric space is second countable
- (ii) A countably compact metric space is compact

Then choose the correct option

- (a) Both i and ii are true
- 79. f is a continuous function from X to R where X is countably compact then f is
- (c) Bounded
- 80 . Which of the following statement is not true
 - (a) Continuous image of a countably compact space is countably compact
 - (b) Countable compactness is a hereditary property
 - (c) Countable compactness is a weakly hereditary property
 - (d) Acountable compact metric space is second countable

- 81. A sequence in a set X is a function;
 - (a) $f: \mathbb{N} \longrightarrow X$, where \mathbb{N} is the set of all natural numbers
 - (b) $f: D \longrightarrow X$, where D is a directed set
 - (c) $f: X \to \mathbb{N}$, where \mathbb{N} is the set of all natural numbers
 - (d) $f: X \longrightarrow D$, where D is a directed set

Answer (a)

- 82 .A directed set is a pair (D, \ge) where D is a non-empty set and \ge a binary relation on D satisfying;
 - (c) (i) Transitivity (ii) Reflexivity (iii) For all m, n \in D, there exists p \in D such that $p \ge m$ and $p \ge n$
- 83. A net in a set X is a function;
 - (d) S: $D \rightarrow X$ where D is a directed set
- 84. Which of the following is not an example of a net;
 - (a) (\mathbb{N}, \geq) where \mathbb{N} is the set of all natural numbers and \geq is the usual ordering on \mathbb{N}
 - (b) (η_x, \ge) where η_x is the neighbourhood system at x and for $U, V \in \eta_x, U \ge V$ iff $V \subset U$
 - (c) (D, \ge) where D is the family of all open neighbourhoods of x and for U, V \in D, U \ge V iff U \subset V
 - (d) (D, \geq) where D = $\eta_x \times \eta_y$ and for (U₁, V₁), (U₂, V₂) \in D, (U₁, V₁) \geq (U₂, V₂) iff U₁ \subset U₂ and V₁ \subset V₂

Answer (b)

- 85. Which of the following is true;
 - (a) A net is a function with codomain is a directed set
 - (b) A net is a function with domain is a directed set
 - (c) Every net converges to some point
 - (d) Every net has a cluster point

Answer (b)

- 86. For a topological space X, the limits of all nets in X are unique. Then;
 - (a) X is a Hausdorff space
 - (b) X is not a Hausdorff space
 - (c) There exist x, y \in X such that U \cap V $\neq \phi$ for all U $\in \eta_x$ and V $\in \eta_y$

(d) For any distinct x, y \in X we have U \cap V $\neq \phi$ for all U $\in \eta_x$ and V $\in \eta_y$ Answer (a) 87. D is a directed set and E is an eventual subset of D, then; (a) For any $m \in D$ there exists $n \in D$ such that $n \ge m$ and $n \notin E$ (b) Every element of D is in E (c) There exists $m \in D$ such that for all $n \in D$, $n \ge m$ implies that $n \in E$ (d) There exists $m \in D$ such that for all $n \in D$, $m \ge n$ implies that $n \in E$ Answer (c) 88. S: D \rightarrow X is a net in X and S is eventually in a subset A of X, then; (a) A contains all the terms of S after a certain stage (b) A contains all the terms of S (c) A contains no terms of S (d) For every m \in D there exists n \in D such that for all n \ge m and $S_n \notin$ A Answer (a) 89. A subset E of a directed set D has the property that for every m \in D, there exists n \in E such that n ≥ m, then; (a) E is an eventual subset of D (b) E is a cofinal subset of D (c) None of the above is true (d) Both (a) and (b) are true Answer (b) 90. A net S: D \rightarrow X is said to be frequently in a subset A of X if; (a) $S^{-1}(A)$ is a cofinal subset of D (b) $S^{-1}(A)$ is an eventual subset of D (c) S converges to a point in X (d) None of the above is true Answer (a) 91. If a net S converges to x, then for every neighbourhood U of x; (a) S is eventually in U (b) S is not eventually in U

(c) S is not frequently in U

(d)	None of the above is true
	Answer (a)
92. If a net 9	S converges to x, then which of the following are true;
(1)	x is a cluster point of S (2) S is eventually in U for every neighbourhood U of x
(3) S is frequently in U for every neighbourhood U of x
(d)	All are true
93. If <i>f</i> is ho	motopic to f' where f is a continuous map and f' is a constant map then;
(a)	f is a path
(b)	f is null-homotopic
(c)	f is path homotopic
(d)	None of the above
	Answer (b)
<i>94. f</i> : [0, 1]	\rightarrow X is a continuous function such that $f(0) = x_0$ and $f(1) = x_1$, then;
(a)	f is a constant path in X
(b)	f is a path in X from x_1 to x_0
(c)	f is a path in X from x_0 to x_1
(d)	f is a path in [0, 1]
	Answer (c)
95 The rel	ation homotopy is;
(a)	Reflexive but not symmetric
(b)	Reflexive and symmetric but not transitive
(c)	Not reflexive
(d)	Reflexive, symmetric and transitive
	Answer (d)
96. The rela	tion path homotopy is;
(a)	Not reflexive
(b)	Not symmetric
(c)	Both (a) and (b) holds
(d)	None is true

Answer (d)

97. f is a path in X from x_0 to x_1 and g is a path in X from x_1 to x_2 , then $f * g$ is;
(a) A path in X from x_0 to x_1
(b) A path in X from x_0 to x_2

(c) A path in X from
$$x_2$$
 to x_0

(d) A path in X from
$$x_1$$
 to x_2
Answer (b)

98. f and g are any two maps of a space X into \mathbb{R}^2 , then;

- (a) f and g are homotopic
- (b) f and g are not homotopic
- (c) f and g are paths in X
- (d) None of the above

Answer (a)

99. f and g are paths in X, then the product f * g is a path in X if;

- (a) f and g have the same initial point and the same final point
- (b) Final point of f is the initial point of g
- (c) Initial point of f is the initial point of g
- (d) Initial point of f is the final point of g

Answer (b)

100. F is a path homotopy between f and f' then for any $s \in I$;

- (a) F(s, 0) = f'(s)
- (b) $F(s, 0) = x_0$
- (c) F(s, 0) = f(s)
- (d) $F(s, 0) = x_1$

Answer (c)